Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Dict | |
from ..models.attention_processor import SD3IPAdapterJointAttnProcessor2_0 | |
from ..models.embeddings import IPAdapterTimeImageProjection | |
from ..models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, load_model_dict_into_meta | |
class SD3Transformer2DLoadersMixin: | |
"""Load IP-Adapters and LoRA layers into a `[SD3Transformer2DModel]`.""" | |
def _load_ip_adapter_weights(self, state_dict: Dict, low_cpu_mem_usage: bool = _LOW_CPU_MEM_USAGE_DEFAULT) -> None: | |
"""Sets IP-Adapter attention processors, image projection, and loads state_dict. | |
Args: | |
state_dict (`Dict`): | |
State dict with keys "ip_adapter", which contains parameters for attention processors, and | |
"image_proj", which contains parameters for image projection net. | |
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`): | |
Speed up model loading only loading the pretrained weights and not initializing the weights. This also | |
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model. | |
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this | |
argument to `True` will raise an error. | |
""" | |
# IP-Adapter cross attention parameters | |
hidden_size = self.config.attention_head_dim * self.config.num_attention_heads | |
ip_hidden_states_dim = self.config.attention_head_dim * self.config.num_attention_heads | |
timesteps_emb_dim = state_dict["ip_adapter"]["0.norm_ip.linear.weight"].shape[1] | |
# Dict where key is transformer layer index, value is attention processor's state dict | |
# ip_adapter state dict keys example: "0.norm_ip.linear.weight" | |
layer_state_dict = {idx: {} for idx in range(len(self.attn_processors))} | |
for key, weights in state_dict["ip_adapter"].items(): | |
idx, name = key.split(".", maxsplit=1) | |
layer_state_dict[int(idx)][name] = weights | |
# Create IP-Adapter attention processor | |
attn_procs = {} | |
for idx, name in enumerate(self.attn_processors.keys()): | |
attn_procs[name] = SD3IPAdapterJointAttnProcessor2_0( | |
hidden_size=hidden_size, | |
ip_hidden_states_dim=ip_hidden_states_dim, | |
head_dim=self.config.attention_head_dim, | |
timesteps_emb_dim=timesteps_emb_dim, | |
).to(self.device, dtype=self.dtype) | |
if not low_cpu_mem_usage: | |
attn_procs[name].load_state_dict(layer_state_dict[idx], strict=True) | |
else: | |
load_model_dict_into_meta( | |
attn_procs[name], layer_state_dict[idx], device=self.device, dtype=self.dtype | |
) | |
self.set_attn_processor(attn_procs) | |
# Image projetion parameters | |
embed_dim = state_dict["image_proj"]["proj_in.weight"].shape[1] | |
output_dim = state_dict["image_proj"]["proj_out.weight"].shape[0] | |
hidden_dim = state_dict["image_proj"]["proj_in.weight"].shape[0] | |
heads = state_dict["image_proj"]["layers.0.attn.to_q.weight"].shape[0] // 64 | |
num_queries = state_dict["image_proj"]["latents"].shape[1] | |
timestep_in_dim = state_dict["image_proj"]["time_embedding.linear_1.weight"].shape[1] | |
# Image projection | |
self.image_proj = IPAdapterTimeImageProjection( | |
embed_dim=embed_dim, | |
output_dim=output_dim, | |
hidden_dim=hidden_dim, | |
heads=heads, | |
num_queries=num_queries, | |
timestep_in_dim=timestep_in_dim, | |
).to(device=self.device, dtype=self.dtype) | |
if not low_cpu_mem_usage: | |
self.image_proj.load_state_dict(state_dict["image_proj"], strict=True) | |
else: | |
load_model_dict_into_meta(self.image_proj, state_dict["image_proj"], device=self.device, dtype=self.dtype) | |