ICEdit / icedit /peft /config.py
RiverZ's picture
upd
3b609b9
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import json
import os
import warnings
from dataclasses import asdict, dataclass, field
from typing import Dict, Optional, Union
from huggingface_hub import hf_hub_download
from transformers.utils import PushToHubMixin
from .utils import CONFIG_NAME, PeftType, TaskType
# we expect at least these keys to be present in a PEFT adapter_config.json
MIN_EXPECTED_CONFIG_KEYS = {"peft_type"}
def _check_and_remove_unused_kwargs(cls, kwargs):
"""Make PEFT configs forward-compatible by removing unused kwargs that were added in later PEFT versions.
This assumes that removing the unused kwargs will not affect the default behavior.
Returns the filtered kwargs and the set of removed keys.
"""
# it's not pretty but eh
signature_parameters = inspect.signature(cls.__init__).parameters
unexpected_kwargs = set(kwargs.keys()) - set(signature_parameters.keys())
for key in unexpected_kwargs:
del kwargs[key]
return kwargs, unexpected_kwargs
@dataclass
class PeftConfigMixin(PushToHubMixin):
r"""
This is the base configuration class for PEFT adapter models. It contains all the methods that are common to all
PEFT adapter models. This class inherits from [`~transformers.utils.PushToHubMixin`] which contains the methods to
push your model to the Hub. The method `save_pretrained` will save the configuration of your adapter model in a
directory. The method `from_pretrained` will load the configuration of your adapter model from a directory.
Args:
peft_type (Union[[`~peft.utils.config.PeftType`], `str`]): The type of Peft method to use.
"""
task_type: Optional[TaskType] = field(default=None, metadata={"help": "The type of task."})
peft_type: Optional[PeftType] = field(default=None, metadata={"help": "The type of PEFT model."})
auto_mapping: Optional[dict] = field(
default=None, metadata={"help": "An auto mapping dict to help retrieve the base model class if needed."}
)
def __post_init__(self):
# check for invalid task type
if (self.task_type is not None) and (self.task_type not in list(TaskType)):
raise ValueError(
f"Invalid task type: '{self.task_type}'. Must be one of the following task types: {', '.join(TaskType)}."
)
def to_dict(self) -> Dict:
r"""
Returns the configuration for your adapter model as a dictionary.
"""
return asdict(self)
def save_pretrained(self, save_directory: str, **kwargs) -> None:
r"""
This method saves the configuration of your adapter model in a directory.
Args:
save_directory (`str`):
The directory where the configuration will be saved.
kwargs (additional keyword arguments, *optional*):
Additional keyword arguments passed along to the [`~transformers.utils.PushToHubMixin.push_to_hub`]
method.
"""
if os.path.isfile(save_directory):
raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file")
os.makedirs(save_directory, exist_ok=True)
auto_mapping_dict = kwargs.pop("auto_mapping_dict", None)
output_dict = self.to_dict()
# converting set type to list
for key, value in output_dict.items():
if isinstance(value, set):
output_dict[key] = list(value)
output_path = os.path.join(save_directory, CONFIG_NAME)
# Add auto mapping details for custom models.
if auto_mapping_dict is not None:
output_dict["auto_mapping"] = auto_mapping_dict
# save it
with open(output_path, "w") as writer:
writer.write(json.dumps(output_dict, indent=2, sort_keys=True))
@classmethod
def from_peft_type(cls, **kwargs):
r"""
This method loads the configuration of your adapter model from a set of kwargs.
The appropriate configuration type is determined by the `peft_type` argument. If `peft_type` is not provided,
the calling class type is instantiated.
Args:
kwargs (configuration keyword arguments):
Keyword arguments passed along to the configuration initialization.
"""
# Avoid circular dependency .. TODO: fix this with a larger refactor
from peft.mapping import PEFT_TYPE_TO_CONFIG_MAPPING
# TODO: this hack is needed to fix the following issue (on commit 702f937):
# if someone saves a default config and loads it back with `PeftConfig` class it yields to
# not loading the correct config class.
#
# from peft import AdaLoraConfig, PeftConfig
# peft_config = AdaLoraConfig()
# print(peft_config)
# >>> AdaLoraConfig(peft_type=<PeftType.ADALORA: 'ADALORA'>, auto_mapping=None, base_model_name_or_path=None,
# revision=None, task_type=None, inference_mode=False, r=8, target_modules=None, lora_alpha=8, lora_dropout=0.0, ...
#
# peft_config.save_pretrained("./test_config")
# peft_config = PeftConfig.from_pretrained("./test_config")
# print(peft_config)
# >>> PeftConfig(peft_type='ADALORA', auto_mapping=None, base_model_name_or_path=None, revision=None, task_type=None, inference_mode=False)
if "peft_type" in kwargs:
peft_type = kwargs["peft_type"]
config_cls = PEFT_TYPE_TO_CONFIG_MAPPING[peft_type]
else:
config_cls = cls
try:
config = config_cls(**kwargs)
except TypeError as exc:
# Here we potentially handle forward compatibility. Sometimes new keywords are added to configs, which makes
# new configs incompatible with older PEFT versions. We catch these and remove them to allow the program to
# continue, but warn the user about it.
# First check if the error is due to unexpected keyword arguments, we don't want to accidentally catch
# other TypeErrors.
if "got an unexpected keyword argument" not in str(exc):
raise exc
filtered_kwargs, unexpected_kwargs = _check_and_remove_unused_kwargs(cls, kwargs)
if not MIN_EXPECTED_CONFIG_KEYS.issubset(set(filtered_kwargs.keys())):
raise TypeError(f"The config that is trying to be loaded is not a valid {cls.__name__} config.")
warnings.warn(
f"Unexpected keyword arguments {sorted(unexpected_kwargs)} for class {cls.__name__}, these are "
"ignored. This probably means that you're loading a configuration file that was saved using a "
"higher version of the library and additional parameters have been introduced since. It is "
"highly recommended to upgrade the PEFT version before continuing (e.g. by running `pip install "
"-U peft`)."
)
config = config_cls.from_peft_type(**filtered_kwargs)
return config
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: str, subfolder: Optional[str] = None, **kwargs):
r"""
This method loads the configuration of your adapter model from a directory.
Args:
pretrained_model_name_or_path (`str`):
The directory or the Hub repository id where the configuration is saved.
kwargs (additional keyword arguments, *optional*):
Additional keyword arguments passed along to the child class initialization.
"""
path = (
os.path.join(pretrained_model_name_or_path, subfolder)
if subfolder is not None
else pretrained_model_name_or_path
)
hf_hub_download_kwargs, class_kwargs, _ = cls._split_kwargs(kwargs)
if os.path.isfile(os.path.join(path, CONFIG_NAME)):
config_file = os.path.join(path, CONFIG_NAME)
else:
try:
config_file = hf_hub_download(
pretrained_model_name_or_path, CONFIG_NAME, subfolder=subfolder, **hf_hub_download_kwargs
)
except Exception as exc:
raise ValueError(f"Can't find '{CONFIG_NAME}' at '{pretrained_model_name_or_path}'") from exc
loaded_attributes = cls.from_json_file(config_file)
kwargs = {**class_kwargs, **loaded_attributes}
kwargs = cls.check_kwargs(**kwargs)
return cls.from_peft_type(**kwargs)
@classmethod
def from_json_file(cls, path_json_file: str, **kwargs):
r"""
Loads a configuration file from a json file.
Args:
path_json_file (`str`):
The path to the json file.
"""
with open(path_json_file) as file:
json_object = json.load(file)
# Sanity check that config does not contain a runtime_config
if "runtime_config" in json_object:
warnings.warn(
"The configuration file contains a `runtime_config` key. This is ignored. Runtime configurations are only valid at runtime."
)
del json_object["runtime_config"]
return json_object
@classmethod
def _split_kwargs(cls, kwargs):
hf_hub_download_kwargs = {}
class_kwargs = {}
other_kwargs = {}
for key, value in kwargs.items():
if key in inspect.signature(hf_hub_download).parameters:
hf_hub_download_kwargs[key] = value
elif key in list(cls.__annotations__):
class_kwargs[key] = value
else:
other_kwargs[key] = value
return hf_hub_download_kwargs, class_kwargs, other_kwargs
@classmethod
def _get_peft_type(
cls,
model_id: str,
**hf_hub_download_kwargs,
):
subfolder = hf_hub_download_kwargs.get("subfolder", None)
path = os.path.join(model_id, subfolder) if subfolder is not None else model_id
if os.path.isfile(os.path.join(path, CONFIG_NAME)):
config_file = os.path.join(path, CONFIG_NAME)
else:
try:
config_file = hf_hub_download(
model_id,
CONFIG_NAME,
**hf_hub_download_kwargs,
)
except Exception:
raise ValueError(f"Can't find '{CONFIG_NAME}' at '{model_id}'")
loaded_attributes = cls.from_json_file(config_file)
return loaded_attributes["peft_type"]
@classmethod
def check_kwargs(cls, **kwargs):
"""Check kwargs before initializing the config instance.
Subclasses can override this method to add specific checks.
"""
return kwargs
@property
def is_prompt_learning(self) -> bool:
r"""
Utility method to check if the configuration is for prompt learning.
"""
return False
@property
def is_adaption_prompt(self) -> bool:
"""Return True if this is an adaption prompt config."""
return False
@dataclass
class PeftConfig(PeftConfigMixin):
"""
This is the base configuration class to store the configuration of a [`PeftModel`].
Args:
peft_type (Union[[`~peft.utils.config.PeftType`], `str`]): The type of Peft method to use.
task_type (Union[[`~peft.utils.config.TaskType`], `str`]): The type of task to perform.
inference_mode (`bool`, defaults to `False`): Whether to use the Peft model in inference mode.
"""
base_model_name_or_path: Optional[str] = field(
default=None, metadata={"help": "The name of the base model to use."}
)
revision: Optional[str] = field(default=None, metadata={"help": "The specific base model version to use."})
peft_type: Optional[Union[str, PeftType]] = field(default=None, metadata={"help": "Peft type"})
task_type: Optional[Union[str, TaskType]] = field(default=None, metadata={"help": "Task type"})
inference_mode: bool = field(default=False, metadata={"help": "Whether to use inference mode"})
@dataclass
class PromptLearningConfig(PeftConfig):
"""
This is the base configuration class to store the configuration of [`PrefixTuning`], [`PromptEncoder`], or
[`PromptTuning`].
Args:
num_virtual_tokens (`int`): The number of virtual tokens to use.
token_dim (`int`): The hidden embedding dimension of the base transformer model.
num_transformer_submodules (`int`): The number of transformer submodules in the base transformer model.
num_attention_heads (`int`): The number of attention heads in the base transformer model.
num_layers (`int`): The number of layers in the base transformer model.
"""
num_virtual_tokens: int = field(default=None, metadata={"help": "Number of virtual tokens"})
token_dim: int = field(
default=None, metadata={"help": "The hidden embedding dimension of the base transformer model"}
)
num_transformer_submodules: Optional[int] = field(
default=None, metadata={"help": "Number of transformer submodules"}
)
num_attention_heads: Optional[int] = field(default=None, metadata={"help": "Number of attention heads"})
num_layers: Optional[int] = field(default=None, metadata={"help": "Number of transformer layers"})
@property
def is_prompt_learning(self) -> bool:
r"""
Utility method to check if the configuration is for prompt learning.
"""
return True