Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024-present the HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
This module contains the implementation of the LoraPlus optimizer. | |
""" | |
from __future__ import annotations | |
from operator import attrgetter | |
import torch.nn as nn | |
from torch.optim import Optimizer | |
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS | |
from transformers.trainer_pt_utils import get_parameter_names | |
from ..peft_model import PeftModel | |
from ..tuners.lora.layer import Embedding | |
def create_loraplus_optimizer( | |
model: PeftModel, optimizer_cls: type[Optimizer], *, lr: float, loraplus_lr_ratio: float, **kwargs | |
) -> Optimizer: | |
""" | |
Creates a LoraPlus optimizer. | |
Efficient Low Rank Adaptation of Large Models: https://arxiv.org/abs/2402.12354 | |
Reference: https://github.com/nikhil-ghosh-berkeley/loraplus/ | |
Args: | |
model (`torch.nn.Module`): The model to be optimized. | |
optimizer_cls (`torch.optim.Optimizer`): The optimizer class to be used. | |
lr (`float`): The learning rate to be used for the optimizer. | |
loraplus_lr_ratio (`float`): | |
The ratio of learning ηB/ηA where ηA (lr) is passed in as the optimizer learning rate. Should be ≥1. Should | |
be set in tandem with the optimizer learning rate (lr); should be larger when the task is more difficult | |
and the model needs to update its features to learn well. In this case, it helps to make the learning rate | |
slightly smaller (e.g., by a factor of 2) than typical vanilla LoRA learning rates | |
loraplus_lr_embedding (optional `float`): | |
If LoRA modules are added to embedding layers your can specify a different learning rate for them. Default | |
value 1e-6. | |
kwargs (`dict`): Additional keyword arguments to be passed to the optimizer. | |
Returns: | |
`torch.optim.Optimizer`: An instance of the specified optimizer class configured with the model's parameters | |
organized into groups with custom learning rates. | |
""" | |
decay_parameters = get_parameter_names(model, ALL_LAYERNORM_LAYERS) | |
decay_parameters = [name for name in decay_parameters if "bias" not in name] | |
param_groups = { | |
"groupA": {}, | |
"groupB": {}, | |
"groupB_no_decay": {}, | |
"embedding": {}, | |
} | |
for name, param in model.named_parameters(): | |
if not param.requires_grad: | |
continue | |
module = attrgetter(name)(model) | |
if isinstance(module, Embedding): | |
param_groups["embedding"][name] = param | |
elif "lora_B" in name or param.ndim == 1: | |
if name in decay_parameters: | |
param_groups["groupB"][name] = param | |
else: | |
param_groups["groupB_no_decay"][name] = param | |
else: | |
param_groups["groupA"][name] = param | |
kwargs["lr"] = lr | |
loraplus_weight_decay = kwargs.pop("loraplus_weight_decay", 0.0) | |
loraplus_lr_embedding = kwargs.pop("loraplus_lr_embedding", 1e-6) | |
optimizer_grouped_parameters = [ | |
{ | |
"params": list(param_groups["groupA"].values()), | |
"weight_decay": loraplus_weight_decay, | |
"lr": lr, | |
}, | |
{ | |
"params": list(param_groups["embedding"].values()), | |
"weight_decay": loraplus_weight_decay, | |
"lr": loraplus_lr_embedding, | |
}, | |
{ | |
"params": list(param_groups["groupB"].values()), | |
"weight_decay": loraplus_weight_decay, | |
"lr": lr * loraplus_lr_ratio, | |
}, | |
{ | |
"params": list(param_groups["groupB_no_decay"].values()), | |
"weight_decay": 0.0, | |
"lr": lr * loraplus_lr_ratio, | |
}, | |
] | |
optimizer = optimizer_cls(optimizer_grouped_parameters, **kwargs) | |
eight_bit_names = ["Adam8bit", "AdamW8bit", "PagedAdam8bit", "PagedAdamW8bit"] | |
if optimizer_cls.__name__ in eight_bit_names: | |
import bitsandbytes | |
manager = bitsandbytes.optim.GlobalOptimManager.get_instance() | |
for module in model.modules(): | |
if isinstance(module, nn.Embedding): | |
manager.register_module_override(module, "weight", {"optim_bits": 32}) | |
return optimizer | |