ICEdit / icedit /peft /utils /integrations.py
RiverZ's picture
upd
3b609b9
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from contextlib import contextmanager
from typing import Literal
import packaging.version
import torch
import transformers
@contextmanager
def gather_params_ctx(param, modifier_rank: int = 0, fwd_module: torch.nn.Module = None):
"""Call DeepSpeed GatheredParameters context manager if DeepSpeed is enabled, otherwise do nothing."""
if packaging.version.parse(transformers.__version__) >= packaging.version.parse("4.33.0"):
from transformers.integrations import is_deepspeed_zero3_enabled
else:
from transformers.deepspeed import is_deepspeed_zero3_enabled
if not is_deepspeed_zero3_enabled():
yield
return
import deepspeed
with deepspeed.zero.GatheredParameters(param, modifier_rank=modifier_rank, fwd_module=fwd_module):
yield
return
def dequantize_module_weight(module: torch.nn.Module) -> torch.nn.Parameter:
"""
Helper function to dequantize a quantized weight.
This function should be extended if more quantization schemes are added to the library.
If the weight is not quantized, it will be returned as is.
"""
if hasattr(module, "W_q"): # For handling HQQ quantized weight
weight = module.dequantize()
return weight
elif type(module.weight).__module__.startswith("torchao."):
# check for torchao without requiring any torchao imports
weight = module.weight.dequantize()
return weight
weight = module.weight
if not isinstance(weight, torch.nn.Parameter):
if isinstance(weight, torch.Tensor):
# this is an FSDP-specific edge case
return weight # type: ignore
raise TypeError(f"Input weight should be of type nn.Parameter, got {type(weight)} instead")
cls_name = weight.__class__.__name__
if cls_name not in ("Params4bit", "Int8Params"):
return weight
quant_state = getattr(module, "state", None)
device = weight.device
is_cpu = device.type == torch.device("cpu").type
weight = dequantize_bnb_weight(weight, state=quant_state) # no-op if not bnb
if is_cpu:
# dequantize_bnb_weight for 8bit moves the device in-place, thus we need to move it back to CPU if necessary
module.weight = module.weight.to(device)
return weight
def dequantize_bnb_weight(weight: torch.nn.Parameter, state=None):
"""Helper function to dequantize 4bit or 8bit bnb weights.
Since dequantization is not supported on CPU, the weight will be temporarily moved to CUDA if necessary.
"""
import bitsandbytes as bnb
# BNB requires CUDA weights
device = weight.device
is_cpu = device.type == torch.device("cpu").type
if is_cpu:
weight = weight.to(torch.device("cuda"))
cls_name = weight.__class__.__name__
if cls_name == "Params4bit":
dequantized = bnb.functional.dequantize_4bit(weight.data, weight.quant_state)
if is_cpu:
dequantized = dequantized.to(device)
return dequantized
if state.SCB is None:
state.SCB = weight.SCB
if hasattr(bnb.functional, "int8_vectorwise_dequant"):
# Use bitsandbytes API if available (requires v0.45.0+)
dequantized = bnb.functional.int8_vectorwise_dequant(weight.data, state.SCB)
else:
# Multiply by (scale/127) to dequantize.
dequantized = weight.data * state.SCB.view(-1, 1) * 7.874015718698502e-3
if is_cpu:
dequantized = dequantized.to(device)
return dequantized
def get_bnb_param_type(param: torch.nn.Parameter) -> Literal[False, "4bit", "8bit"]:
"""Returns '4bit' or '8bit' if bitsandbytes parameter, else False"""
if param.__class__.__name__ == "Params4bit":
return "4bit"
if param.__class__.__name__ == "Int8Params":
return "8bit"
return False
# adapted from:
# https://github.com/huggingface/transformers/blob/eab6c491d439e83d5e31c660df6f7e36592eb0a2/src/transformers/generation/utils.py#L1617-L1643
def get_layer_device_map(model):
"""
Derive the device map for the layers of the model.
"""
main_device = [d for d in model.hf_device_map.values() if d not in ["cpu", "disk"]][0]
execution_device_map = {
name: main_device if device in ["cpu", "disk"] else device for name, device in model.hf_device_map.items()
}
if execution_device_map is None:
return None
if len(execution_device_map) == 1 and "" in execution_device_map:
return {idx: execution_device_map[""] for idx in range(model.config.num_hidden_layers)}
layer_device_map = {}
for layer in execution_device_map:
for idx in range(model.config.num_hidden_layers):
if f".{idx}." in f"{layer}.":
layer_device_map[idx] = execution_device_map[layer]
break
for idx in range(model.config.num_hidden_layers):
if idx not in layer_device_map:
raise RuntimeError(f"layer {idx} has not been mapped to a device.")
return layer_device_map
# adapted from:
# https://github.com/huggingface/transformers/blob/eab6c491d439e83d5e31c660df6f7e36592eb0a2/src/transformers/cache_utils.py#L1159-L1179
def map_cache_to_layer_device_map(model, cache) -> None:
"""
Ensure that the key and value cache of the model are on the same device as their corresponding layers.
"""
if not (isinstance(cache, transformers.Cache) and hasattr(model, "hf_device_map")):
return
if isinstance(cache, transformers.EncoderDecoderCache):
map_cache_to_layer_device_map(model, cache.self_attention_cache)
return
layer_device_map = get_layer_device_map(model)
for idx in range(model.config.num_hidden_layers):
layer_device = layer_device_map[idx]
cache.key_cache[idx] = cache.key_cache[idx].to(layer_device)
cache.value_cache[idx] = cache.value_cache[idx].to(layer_device)