Spaces:
Running
on
Zero
Running
on
Zero
''' | |
python scripts/gradio_demo.py | |
''' | |
from huggingface_hub import login | |
login(token='hf' + '_AXWPrcOaMDdPlwkvsFVPrIxWstxAfOdcqX') | |
import sys | |
import os | |
workspace_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "icedit")) | |
if workspace_dir not in sys.path: | |
sys.path.insert(0, workspace_dir) | |
from diffusers import FluxFillPipeline | |
import gradio as gr | |
import numpy as np | |
import torch | |
import argparse | |
import random | |
import spaces | |
from PIL import Image | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--port", type=int, default=7860, help="Port for the Gradio app") | |
parser.add_argument("--output-dir", type=str, default="gradio_results", help="Directory to save the output image") | |
parser.add_argument("--flux-path", type=str, default='black-forest-labs/flux.1-fill-dev', help="Path to the model") | |
parser.add_argument("--lora-path", type=str, default='sanaka87/ICEdit-MoE-LoRA', help="Path to the LoRA weights") | |
parser.add_argument("--enable-model-cpu-offload", action="store_true", help="Enable CPU offloading for the model") | |
args = parser.parse_args() | |
pipe = FluxFillPipeline.from_pretrained(args.flux_path, torch_dtype=torch.bfloat16) | |
pipe.load_lora_weights(args.lora_path) | |
if args.enable_model_cpu_offload: | |
pipe.enable_model_cpu_offload() | |
else: | |
pipe = pipe.to("cuda") | |
def infer(edit_images, | |
prompt, | |
seed=666, | |
randomize_seed=False, | |
width=1024, | |
height=1024, | |
guidance_scale=50, | |
num_inference_steps=28, | |
progress=gr.Progress(track_tqdm=True) | |
): | |
image = edit_images["background"] | |
if image.size[0] != 512: | |
print("\033[93m[WARNING] We can only deal with the case where the image's width is 512.\033[0m") | |
new_width = 512 | |
scale = new_width / image.size[0] | |
new_height = int(image.size[1] * scale) | |
new_height = (new_height // 8) * 8 | |
image = image.resize((new_width, new_height)) | |
print(f"\033[93m[WARNING] Resizing the image to {new_width} x {new_height}\033[0m") | |
image = image.convert("RGB") | |
width, height = image.size | |
image = image.resize((512, int(512 * height / width))) | |
combined_image = Image.new("RGB", (width * 2, height)) | |
combined_image.paste(image, (0, 0)) | |
mask_array = np.zeros((height, width * 2), dtype=np.uint8) | |
mask_array[:, width:] = 255 | |
mask = Image.fromarray(mask_array) | |
instruction = f'A diptych with two side-by-side images of the same scene. On the right, the scene is exactly the same as on the left but {prompt}' | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
image = pipe( | |
prompt=instruction, | |
image=combined_image, | |
mask_image=mask, | |
height=height, | |
width=width*2, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
generator=torch.Generator().manual_seed(seed), | |
).images[0] | |
w,h = image.size | |
image = image.crop((w//2, 0, w, h)) | |
os.makedirs(args.output_dir, exist_ok=True) | |
index = len(os.listdir(args.output_dir)) | |
image.save(f"{args.output_dir}/result_{index}.png") | |
return image, seed | |
examples = [ | |
"a tiny astronaut hatching from an egg on the moon", | |
"a cat holding a sign that says hello world", | |
"an anime illustration of a wiener schnitzel", | |
] | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 1000px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f"""# IC-Edit | |
A demo for [IC-Edit](https://arxiv.org/pdf/2504.20690). | |
More **open-source**, with **lower costs**, **faster speed** (it takes about 9 seconds to process one image), and **powerful performance**. | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
edit_image = gr.ImageEditor( | |
label='Upload and draw mask for inpainting', | |
type='pil', | |
sources=["upload", "webcam"], | |
image_mode='RGB', | |
layers=False, | |
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"), | |
height=600 | |
) | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run") | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=512, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
visible=False | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=512, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
visible=False | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=1, | |
maximum=100, | |
step=0.5, | |
value=50, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=28, | |
) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn = infer, | |
inputs = [edit_image, prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
outputs = [result, seed] | |
) | |
demo.launch(server_port=args.port) |