ICEdit / app.py
sanaka87's picture
Update app.py
d3490c0 verified
raw
history blame
6.41 kB
'''
python scripts/gradio_demo.py
'''
from huggingface_hub import login
login(token='hf' + '_AXWPrcOaMDdPlwkvsFVPrIxWstxAfOdcqX')
import sys
import os
workspace_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "icedit"))
if workspace_dir not in sys.path:
sys.path.insert(0, workspace_dir)
from diffusers import FluxFillPipeline
import gradio as gr
import numpy as np
import torch
import argparse
import random
import spaces
from PIL import Image
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
parser = argparse.ArgumentParser()
parser.add_argument("--port", type=int, default=7860, help="Port for the Gradio app")
parser.add_argument("--output-dir", type=str, default="gradio_results", help="Directory to save the output image")
parser.add_argument("--flux-path", type=str, default='black-forest-labs/flux.1-fill-dev', help="Path to the model")
parser.add_argument("--lora-path", type=str, default='sanaka87/ICEdit-MoE-LoRA', help="Path to the LoRA weights")
parser.add_argument("--enable-model-cpu-offload", action="store_true", help="Enable CPU offloading for the model")
args = parser.parse_args()
pipe = FluxFillPipeline.from_pretrained(args.flux_path, torch_dtype=torch.bfloat16)
pipe.load_lora_weights(args.lora_path)
if args.enable_model_cpu_offload:
pipe.enable_model_cpu_offload()
else:
pipe = pipe.to("cuda")
@spaces.GPU
def infer(edit_images,
prompt,
seed=666,
randomize_seed=False,
width=1024,
height=1024,
guidance_scale=50,
num_inference_steps=28,
progress=gr.Progress(track_tqdm=True)
):
image = edit_images["background"]
if image.size[0] != 512:
print("\033[93m[WARNING] We can only deal with the case where the image's width is 512.\033[0m")
new_width = 512
scale = new_width / image.size[0]
new_height = int(image.size[1] * scale)
new_height = (new_height // 8) * 8
image = image.resize((new_width, new_height))
print(f"\033[93m[WARNING] Resizing the image to {new_width} x {new_height}\033[0m")
image = image.convert("RGB")
width, height = image.size
image = image.resize((512, int(512 * height / width)))
combined_image = Image.new("RGB", (width * 2, height))
combined_image.paste(image, (0, 0))
mask_array = np.zeros((height, width * 2), dtype=np.uint8)
mask_array[:, width:] = 255
mask = Image.fromarray(mask_array)
instruction = f'A diptych with two side-by-side images of the same scene. On the right, the scene is exactly the same as on the left but {prompt}'
if randomize_seed:
seed = random.randint(0, MAX_SEED)
image = pipe(
prompt=instruction,
image=combined_image,
mask_image=mask,
height=height,
width=width*2,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=torch.Generator().manual_seed(seed),
).images[0]
w,h = image.size
image = image.crop((w//2, 0, w, h))
os.makedirs(args.output_dir, exist_ok=True)
index = len(os.listdir(args.output_dir))
image.save(f"{args.output_dir}/result_{index}.png")
return image, seed
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cat holding a sign that says hello world",
"an anime illustration of a wiener schnitzel",
]
css="""
#col-container {
margin: 0 auto;
max-width: 1000px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# IC-Edit
A demo for [IC-Edit](https://arxiv.org/pdf/2504.20690).
More **open-source**, with **lower costs**, **faster speed** (it takes about 9 seconds to process one image), and **powerful performance**.
""")
with gr.Row():
with gr.Column():
edit_image = gr.ImageEditor(
label='Upload and draw mask for inpainting',
type='pil',
sources=["upload", "webcam"],
image_mode='RGB',
layers=False,
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"),
height=600
)
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
visible=False
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
visible=False
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=100,
step=0.5,
value=50,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn = infer,
inputs = [edit_image, prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs = [result, seed]
)
demo.launch(server_port=args.port)