Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import List, Optional, Union | |
import torch | |
from PIL import Image | |
from transformers import ( | |
CLIPTextModel, | |
CLIPTokenizer, | |
SiglipImageProcessor, | |
SiglipVisionModel, | |
T5EncoderModel, | |
T5TokenizerFast, | |
) | |
from ...image_processor import PipelineImageInput | |
from ...loaders import FluxLoraLoaderMixin, TextualInversionLoaderMixin | |
from ...utils import ( | |
USE_PEFT_BACKEND, | |
is_torch_xla_available, | |
logging, | |
replace_example_docstring, | |
scale_lora_layers, | |
unscale_lora_layers, | |
) | |
from ..pipeline_utils import DiffusionPipeline | |
from .modeling_flux import ReduxImageEncoder | |
from .pipeline_output import FluxPriorReduxPipelineOutput | |
if is_torch_xla_available(): | |
XLA_AVAILABLE = True | |
else: | |
XLA_AVAILABLE = False | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
EXAMPLE_DOC_STRING = """ | |
Examples: | |
```py | |
>>> import torch | |
>>> from diffusers import FluxPriorReduxPipeline, FluxPipeline | |
>>> from diffusers.utils import load_image | |
>>> device = "cuda" | |
>>> dtype = torch.bfloat16 | |
>>> repo_redux = "black-forest-labs/FLUX.1-Redux-dev" | |
>>> repo_base = "black-forest-labs/FLUX.1-dev" | |
>>> pipe_prior_redux = FluxPriorReduxPipeline.from_pretrained(repo_redux, torch_dtype=dtype).to(device) | |
>>> pipe = FluxPipeline.from_pretrained( | |
... repo_base, text_encoder=None, text_encoder_2=None, torch_dtype=torch.bfloat16 | |
... ).to(device) | |
>>> image = load_image( | |
... "https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/style_ziggy/img5.png" | |
... ) | |
>>> pipe_prior_output = pipe_prior_redux(image) | |
>>> images = pipe( | |
... guidance_scale=2.5, | |
... num_inference_steps=50, | |
... generator=torch.Generator("cpu").manual_seed(0), | |
... **pipe_prior_output, | |
... ).images | |
>>> images[0].save("flux-redux.png") | |
``` | |
""" | |
class FluxPriorReduxPipeline(DiffusionPipeline): | |
r""" | |
The Flux Redux pipeline for image-to-image generation. | |
Reference: https://blackforestlabs.ai/flux-1-tools/ | |
Args: | |
image_encoder ([`SiglipVisionModel`]): | |
SIGLIP vision model to encode the input image. | |
feature_extractor ([`SiglipImageProcessor`]): | |
Image processor for preprocessing images for the SIGLIP model. | |
image_embedder ([`ReduxImageEncoder`]): | |
Redux image encoder to process the SIGLIP embeddings. | |
text_encoder ([`CLIPTextModel`], *optional*): | |
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically | |
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | |
text_encoder_2 ([`T5EncoderModel`], *optional*): | |
[T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically | |
the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant. | |
tokenizer (`CLIPTokenizer`, *optional*): | |
Tokenizer of class | |
[CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer). | |
tokenizer_2 (`T5TokenizerFast`, *optional*): | |
Second Tokenizer of class | |
[T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast). | |
""" | |
model_cpu_offload_seq = "image_encoder->image_embedder" | |
_optional_components = [ | |
"text_encoder", | |
"tokenizer", | |
"text_encoder_2", | |
"tokenizer_2", | |
] | |
_callback_tensor_inputs = [] | |
def __init__( | |
self, | |
image_encoder: SiglipVisionModel, | |
feature_extractor: SiglipImageProcessor, | |
image_embedder: ReduxImageEncoder, | |
text_encoder: CLIPTextModel = None, | |
tokenizer: CLIPTokenizer = None, | |
text_encoder_2: T5EncoderModel = None, | |
tokenizer_2: T5TokenizerFast = None, | |
): | |
super().__init__() | |
self.register_modules( | |
image_encoder=image_encoder, | |
feature_extractor=feature_extractor, | |
image_embedder=image_embedder, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
text_encoder_2=text_encoder_2, | |
tokenizer_2=tokenizer_2, | |
) | |
self.tokenizer_max_length = ( | |
self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77 | |
) | |
def check_inputs( | |
self, | |
image, | |
prompt, | |
prompt_2, | |
prompt_embeds=None, | |
pooled_prompt_embeds=None, | |
prompt_embeds_scale=1.0, | |
pooled_prompt_embeds_scale=1.0, | |
): | |
if prompt is not None and prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
" only forward one of the two." | |
) | |
elif prompt_2 is not None and prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
" only forward one of the two." | |
) | |
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): | |
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") | |
if prompt is not None and (isinstance(prompt, list) and isinstance(image, list) and len(prompt) != len(image)): | |
raise ValueError( | |
f"number of prompts must be equal to number of images, but {len(prompt)} prompts were provided and {len(image)} images" | |
) | |
if prompt_embeds is not None and pooled_prompt_embeds is None: | |
raise ValueError( | |
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." | |
) | |
if isinstance(prompt_embeds_scale, list) and ( | |
isinstance(image, list) and len(prompt_embeds_scale) != len(image) | |
): | |
raise ValueError( | |
f"number of weights must be equal to number of images, but {len(prompt_embeds_scale)} weights were provided and {len(image)} images" | |
) | |
def encode_image(self, image, device, num_images_per_prompt): | |
dtype = next(self.image_encoder.parameters()).dtype | |
image = self.feature_extractor.preprocess( | |
images=image, do_resize=True, return_tensors="pt", do_convert_rgb=True | |
) | |
image = image.to(device=device, dtype=dtype) | |
image_enc_hidden_states = self.image_encoder(**image).last_hidden_state | |
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) | |
return image_enc_hidden_states | |
# Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_t5_prompt_embeds | |
def _get_t5_prompt_embeds( | |
self, | |
prompt: Union[str, List[str]] = None, | |
num_images_per_prompt: int = 1, | |
max_sequence_length: int = 512, | |
device: Optional[torch.device] = None, | |
dtype: Optional[torch.dtype] = None, | |
): | |
device = device or self._execution_device | |
dtype = dtype or self.text_encoder.dtype | |
prompt = [prompt] if isinstance(prompt, str) else prompt | |
batch_size = len(prompt) | |
if isinstance(self, TextualInversionLoaderMixin): | |
prompt = self.maybe_convert_prompt(prompt, self.tokenizer_2) | |
text_inputs = self.tokenizer_2( | |
prompt, | |
padding="max_length", | |
max_length=max_sequence_length, | |
truncation=True, | |
return_length=False, | |
return_overflowing_tokens=False, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): | |
removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) | |
logger.warning( | |
"The following part of your input was truncated because `max_sequence_length` is set to " | |
f" {max_sequence_length} tokens: {removed_text}" | |
) | |
prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0] | |
dtype = self.text_encoder_2.dtype | |
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) | |
_, seq_len, _ = prompt_embeds.shape | |
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
return prompt_embeds | |
# Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_clip_prompt_embeds | |
def _get_clip_prompt_embeds( | |
self, | |
prompt: Union[str, List[str]], | |
num_images_per_prompt: int = 1, | |
device: Optional[torch.device] = None, | |
): | |
device = device or self._execution_device | |
prompt = [prompt] if isinstance(prompt, str) else prompt | |
batch_size = len(prompt) | |
if isinstance(self, TextualInversionLoaderMixin): | |
prompt = self.maybe_convert_prompt(prompt, self.tokenizer) | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=self.tokenizer_max_length, | |
truncation=True, | |
return_overflowing_tokens=False, | |
return_length=False, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): | |
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) | |
logger.warning( | |
"The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {self.tokenizer_max_length} tokens: {removed_text}" | |
) | |
prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False) | |
# Use pooled output of CLIPTextModel | |
prompt_embeds = prompt_embeds.pooler_output | |
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt) | |
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1) | |
return prompt_embeds | |
# Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.encode_prompt | |
def encode_prompt( | |
self, | |
prompt: Union[str, List[str]], | |
prompt_2: Union[str, List[str]], | |
device: Optional[torch.device] = None, | |
num_images_per_prompt: int = 1, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
max_sequence_length: int = 512, | |
lora_scale: Optional[float] = None, | |
): | |
r""" | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
prompt to be encoded | |
prompt_2 (`str` or `List[str]`, *optional*): | |
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | |
used in all text-encoders | |
device: (`torch.device`): | |
torch device | |
num_images_per_prompt (`int`): | |
number of images that should be generated per prompt | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
If not provided, pooled text embeddings will be generated from `prompt` input argument. | |
lora_scale (`float`, *optional*): | |
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | |
""" | |
device = device or self._execution_device | |
# set lora scale so that monkey patched LoRA | |
# function of text encoder can correctly access it | |
if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin): | |
self._lora_scale = lora_scale | |
# dynamically adjust the LoRA scale | |
if self.text_encoder is not None and USE_PEFT_BACKEND: | |
scale_lora_layers(self.text_encoder, lora_scale) | |
if self.text_encoder_2 is not None and USE_PEFT_BACKEND: | |
scale_lora_layers(self.text_encoder_2, lora_scale) | |
prompt = [prompt] if isinstance(prompt, str) else prompt | |
if prompt_embeds is None: | |
prompt_2 = prompt_2 or prompt | |
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 | |
# We only use the pooled prompt output from the CLIPTextModel | |
pooled_prompt_embeds = self._get_clip_prompt_embeds( | |
prompt=prompt, | |
device=device, | |
num_images_per_prompt=num_images_per_prompt, | |
) | |
prompt_embeds = self._get_t5_prompt_embeds( | |
prompt=prompt_2, | |
num_images_per_prompt=num_images_per_prompt, | |
max_sequence_length=max_sequence_length, | |
device=device, | |
) | |
if self.text_encoder is not None: | |
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: | |
# Retrieve the original scale by scaling back the LoRA layers | |
unscale_lora_layers(self.text_encoder, lora_scale) | |
if self.text_encoder_2 is not None: | |
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: | |
# Retrieve the original scale by scaling back the LoRA layers | |
unscale_lora_layers(self.text_encoder_2, lora_scale) | |
dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype | |
text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype) | |
return prompt_embeds, pooled_prompt_embeds, text_ids | |
def __call__( | |
self, | |
image: PipelineImageInput, | |
prompt: Union[str, List[str]] = None, | |
prompt_2: Optional[Union[str, List[str]]] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
prompt_embeds_scale: Optional[Union[float, List[float]]] = 1.0, | |
pooled_prompt_embeds_scale: Optional[Union[float, List[float]]] = 1.0, | |
return_dict: bool = True, | |
): | |
r""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): | |
`Image`, numpy array or tensor representing an image batch to be used as the starting point. For both | |
numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list | |
or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a | |
list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide the image generation. **experimental feature**: to use this feature, | |
make sure to explicitly load text encoders to the pipeline. Prompts will be ignored if text encoders | |
are not loaded. | |
prompt_2 (`str` or `List[str]`, *optional*): | |
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated pooled text embeddings. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.flux.FluxPriorReduxPipelineOutput`] instead of a plain tuple. | |
Examples: | |
Returns: | |
[`~pipelines.flux.FluxPriorReduxPipelineOutput`] or `tuple`: | |
[`~pipelines.flux.FluxPriorReduxPipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When | |
returning a tuple, the first element is a list with the generated images. | |
""" | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
image, | |
prompt, | |
prompt_2, | |
prompt_embeds=prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
prompt_embeds_scale=prompt_embeds_scale, | |
pooled_prompt_embeds_scale=pooled_prompt_embeds_scale, | |
) | |
# 2. Define call parameters | |
if image is not None and isinstance(image, Image.Image): | |
batch_size = 1 | |
elif image is not None and isinstance(image, list): | |
batch_size = len(image) | |
else: | |
batch_size = image.shape[0] | |
if prompt is not None and isinstance(prompt, str): | |
prompt = batch_size * [prompt] | |
if isinstance(prompt_embeds_scale, float): | |
prompt_embeds_scale = batch_size * [prompt_embeds_scale] | |
if isinstance(pooled_prompt_embeds_scale, float): | |
pooled_prompt_embeds_scale = batch_size * [pooled_prompt_embeds_scale] | |
device = self._execution_device | |
# 3. Prepare image embeddings | |
image_latents = self.encode_image(image, device, 1) | |
image_embeds = self.image_embedder(image_latents).image_embeds | |
image_embeds = image_embeds.to(device=device) | |
# 3. Prepare (dummy) text embeddings | |
if hasattr(self, "text_encoder") and self.text_encoder is not None: | |
( | |
prompt_embeds, | |
pooled_prompt_embeds, | |
_, | |
) = self.encode_prompt( | |
prompt=prompt, | |
prompt_2=prompt_2, | |
prompt_embeds=prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
device=device, | |
num_images_per_prompt=1, | |
max_sequence_length=512, | |
lora_scale=None, | |
) | |
else: | |
if prompt is not None: | |
logger.warning( | |
"prompt input is ignored when text encoders are not loaded to the pipeline. " | |
"Make sure to explicitly load the text encoders to enable prompt input. " | |
) | |
# max_sequence_length is 512, t5 encoder hidden size is 4096 | |
prompt_embeds = torch.zeros((batch_size, 512, 4096), device=device, dtype=image_embeds.dtype) | |
# pooled_prompt_embeds is 768, clip text encoder hidden size | |
pooled_prompt_embeds = torch.zeros((batch_size, 768), device=device, dtype=image_embeds.dtype) | |
# scale & concatenate image and text embeddings | |
prompt_embeds = torch.cat([prompt_embeds, image_embeds], dim=1) | |
prompt_embeds *= torch.tensor(prompt_embeds_scale, device=device, dtype=image_embeds.dtype)[:, None, None] | |
pooled_prompt_embeds *= torch.tensor(pooled_prompt_embeds_scale, device=device, dtype=image_embeds.dtype)[ | |
:, None | |
] | |
# weighted sum | |
prompt_embeds = torch.sum(prompt_embeds, dim=0, keepdim=True) | |
pooled_prompt_embeds = torch.sum(pooled_prompt_embeds, dim=0, keepdim=True) | |
# Offload all models | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return (prompt_embeds, pooled_prompt_embeds) | |
return FluxPriorReduxPipelineOutput(prompt_embeds=prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds) | |