Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 The RhymesAI and The HuggingFace Team. | |
# All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Any, Dict, Optional, Tuple | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from ...configuration_utils import ConfigMixin, register_to_config | |
from ...utils import is_torch_version, logging | |
from ...utils.torch_utils import maybe_allow_in_graph | |
from ..attention import FeedForward | |
from ..attention_processor import AllegroAttnProcessor2_0, Attention | |
from ..embeddings import PatchEmbed, PixArtAlphaTextProjection | |
from ..modeling_outputs import Transformer2DModelOutput | |
from ..modeling_utils import ModelMixin | |
from ..normalization import AdaLayerNormSingle | |
logger = logging.get_logger(__name__) | |
class AllegroTransformerBlock(nn.Module): | |
r""" | |
Transformer block used in [Allegro](https://github.com/rhymes-ai/Allegro) model. | |
Args: | |
dim (`int`): | |
The number of channels in the input and output. | |
num_attention_heads (`int`): | |
The number of heads to use for multi-head attention. | |
attention_head_dim (`int`): | |
The number of channels in each head. | |
dropout (`float`, defaults to `0.0`): | |
The dropout probability to use. | |
cross_attention_dim (`int`, defaults to `2304`): | |
The dimension of the cross attention features. | |
activation_fn (`str`, defaults to `"gelu-approximate"`): | |
Activation function to be used in feed-forward. | |
attention_bias (`bool`, defaults to `False`): | |
Whether or not to use bias in attention projection layers. | |
only_cross_attention (`bool`, defaults to `False`): | |
norm_elementwise_affine (`bool`, defaults to `True`): | |
Whether to use learnable elementwise affine parameters for normalization. | |
norm_eps (`float`, defaults to `1e-5`): | |
Epsilon value for normalization layers. | |
final_dropout (`bool` defaults to `False`): | |
Whether to apply a final dropout after the last feed-forward layer. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
dropout=0.0, | |
cross_attention_dim: Optional[int] = None, | |
activation_fn: str = "geglu", | |
attention_bias: bool = False, | |
norm_elementwise_affine: bool = True, | |
norm_eps: float = 1e-5, | |
): | |
super().__init__() | |
# 1. Self Attention | |
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
self.attn1 = Attention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
cross_attention_dim=None, | |
processor=AllegroAttnProcessor2_0(), | |
) | |
# 2. Cross Attention | |
self.norm2 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
self.attn2 = Attention( | |
query_dim=dim, | |
cross_attention_dim=cross_attention_dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
processor=AllegroAttnProcessor2_0(), | |
) | |
# 3. Feed Forward | |
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
self.ff = FeedForward( | |
dim, | |
dropout=dropout, | |
activation_fn=activation_fn, | |
) | |
# 4. Scale-shift | |
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
temb: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
image_rotary_emb=None, | |
) -> torch.Tensor: | |
# 0. Self-Attention | |
batch_size = hidden_states.shape[0] | |
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( | |
self.scale_shift_table[None] + temb.reshape(batch_size, 6, -1) | |
).chunk(6, dim=1) | |
norm_hidden_states = self.norm1(hidden_states) | |
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa | |
norm_hidden_states = norm_hidden_states.squeeze(1) | |
attn_output = self.attn1( | |
norm_hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=attention_mask, | |
image_rotary_emb=image_rotary_emb, | |
) | |
attn_output = gate_msa * attn_output | |
hidden_states = attn_output + hidden_states | |
if hidden_states.ndim == 4: | |
hidden_states = hidden_states.squeeze(1) | |
# 1. Cross-Attention | |
if self.attn2 is not None: | |
norm_hidden_states = hidden_states | |
attn_output = self.attn2( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=encoder_attention_mask, | |
image_rotary_emb=None, | |
) | |
hidden_states = attn_output + hidden_states | |
# 2. Feed-forward | |
norm_hidden_states = self.norm2(hidden_states) | |
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp | |
ff_output = self.ff(norm_hidden_states) | |
ff_output = gate_mlp * ff_output | |
hidden_states = ff_output + hidden_states | |
# TODO(aryan): maybe following line is not required | |
if hidden_states.ndim == 4: | |
hidden_states = hidden_states.squeeze(1) | |
return hidden_states | |
class AllegroTransformer3DModel(ModelMixin, ConfigMixin): | |
_supports_gradient_checkpointing = True | |
""" | |
A 3D Transformer model for video-like data. | |
Args: | |
patch_size (`int`, defaults to `2`): | |
The size of spatial patches to use in the patch embedding layer. | |
patch_size_t (`int`, defaults to `1`): | |
The size of temporal patches to use in the patch embedding layer. | |
num_attention_heads (`int`, defaults to `24`): | |
The number of heads to use for multi-head attention. | |
attention_head_dim (`int`, defaults to `96`): | |
The number of channels in each head. | |
in_channels (`int`, defaults to `4`): | |
The number of channels in the input. | |
out_channels (`int`, *optional*, defaults to `4`): | |
The number of channels in the output. | |
num_layers (`int`, defaults to `32`): | |
The number of layers of Transformer blocks to use. | |
dropout (`float`, defaults to `0.0`): | |
The dropout probability to use. | |
cross_attention_dim (`int`, defaults to `2304`): | |
The dimension of the cross attention features. | |
attention_bias (`bool`, defaults to `True`): | |
Whether or not to use bias in the attention projection layers. | |
sample_height (`int`, defaults to `90`): | |
The height of the input latents. | |
sample_width (`int`, defaults to `160`): | |
The width of the input latents. | |
sample_frames (`int`, defaults to `22`): | |
The number of frames in the input latents. | |
activation_fn (`str`, defaults to `"gelu-approximate"`): | |
Activation function to use in feed-forward. | |
norm_elementwise_affine (`bool`, defaults to `False`): | |
Whether or not to use elementwise affine in normalization layers. | |
norm_eps (`float`, defaults to `1e-6`): | |
The epsilon value to use in normalization layers. | |
caption_channels (`int`, defaults to `4096`): | |
Number of channels to use for projecting the caption embeddings. | |
interpolation_scale_h (`float`, defaults to `2.0`): | |
Scaling factor to apply in 3D positional embeddings across height dimension. | |
interpolation_scale_w (`float`, defaults to `2.0`): | |
Scaling factor to apply in 3D positional embeddings across width dimension. | |
interpolation_scale_t (`float`, defaults to `2.2`): | |
Scaling factor to apply in 3D positional embeddings across time dimension. | |
""" | |
def __init__( | |
self, | |
patch_size: int = 2, | |
patch_size_t: int = 1, | |
num_attention_heads: int = 24, | |
attention_head_dim: int = 96, | |
in_channels: int = 4, | |
out_channels: int = 4, | |
num_layers: int = 32, | |
dropout: float = 0.0, | |
cross_attention_dim: int = 2304, | |
attention_bias: bool = True, | |
sample_height: int = 90, | |
sample_width: int = 160, | |
sample_frames: int = 22, | |
activation_fn: str = "gelu-approximate", | |
norm_elementwise_affine: bool = False, | |
norm_eps: float = 1e-6, | |
caption_channels: int = 4096, | |
interpolation_scale_h: float = 2.0, | |
interpolation_scale_w: float = 2.0, | |
interpolation_scale_t: float = 2.2, | |
): | |
super().__init__() | |
self.inner_dim = num_attention_heads * attention_head_dim | |
interpolation_scale_t = ( | |
interpolation_scale_t | |
if interpolation_scale_t is not None | |
else ((sample_frames - 1) // 16 + 1) | |
if sample_frames % 2 == 1 | |
else sample_frames // 16 | |
) | |
interpolation_scale_h = interpolation_scale_h if interpolation_scale_h is not None else sample_height / 30 | |
interpolation_scale_w = interpolation_scale_w if interpolation_scale_w is not None else sample_width / 40 | |
# 1. Patch embedding | |
self.pos_embed = PatchEmbed( | |
height=sample_height, | |
width=sample_width, | |
patch_size=patch_size, | |
in_channels=in_channels, | |
embed_dim=self.inner_dim, | |
pos_embed_type=None, | |
) | |
# 2. Transformer blocks | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
AllegroTransformerBlock( | |
self.inner_dim, | |
num_attention_heads, | |
attention_head_dim, | |
dropout=dropout, | |
cross_attention_dim=cross_attention_dim, | |
activation_fn=activation_fn, | |
attention_bias=attention_bias, | |
norm_elementwise_affine=norm_elementwise_affine, | |
norm_eps=norm_eps, | |
) | |
for _ in range(num_layers) | |
] | |
) | |
# 3. Output projection & norm | |
self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6) | |
self.scale_shift_table = nn.Parameter(torch.randn(2, self.inner_dim) / self.inner_dim**0.5) | |
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * out_channels) | |
# 4. Timestep embeddings | |
self.adaln_single = AdaLayerNormSingle(self.inner_dim, use_additional_conditions=False) | |
# 5. Caption projection | |
self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=self.inner_dim) | |
self.gradient_checkpointing = False | |
def _set_gradient_checkpointing(self, module, value=False): | |
self.gradient_checkpointing = value | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: torch.Tensor, | |
timestep: torch.LongTensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | |
return_dict: bool = True, | |
): | |
batch_size, num_channels, num_frames, height, width = hidden_states.shape | |
p_t = self.config.patch_size_t | |
p = self.config.patch_size | |
post_patch_num_frames = num_frames // p_t | |
post_patch_height = height // p | |
post_patch_width = width // p | |
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension. | |
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward. | |
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias. | |
# expects mask of shape: | |
# [batch, key_tokens] | |
# adds singleton query_tokens dimension: | |
# [batch, 1, key_tokens] | |
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: | |
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) | |
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) attention_mask_vid, attention_mask_img = None, None | |
if attention_mask is not None and attention_mask.ndim == 4: | |
# assume that mask is expressed as: | |
# (1 = keep, 0 = discard) | |
# convert mask into a bias that can be added to attention scores: | |
# (keep = +0, discard = -10000.0) | |
# b, frame+use_image_num, h, w -> a video with images | |
# b, 1, h, w -> only images | |
attention_mask = attention_mask.to(hidden_states.dtype) | |
attention_mask = attention_mask[:, :num_frames] # [batch_size, num_frames, height, width] | |
if attention_mask.numel() > 0: | |
attention_mask = attention_mask.unsqueeze(1) # [batch_size, 1, num_frames, height, width] | |
attention_mask = F.max_pool3d(attention_mask, kernel_size=(p_t, p, p), stride=(p_t, p, p)) | |
attention_mask = attention_mask.flatten(1).view(batch_size, 1, -1) | |
attention_mask = ( | |
(1 - attention_mask.bool().to(hidden_states.dtype)) * -10000.0 if attention_mask.numel() > 0 else None | |
) | |
# convert encoder_attention_mask to a bias the same way we do for attention_mask | |
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2: | |
encoder_attention_mask = (1 - encoder_attention_mask.to(self.dtype)) * -10000.0 | |
encoder_attention_mask = encoder_attention_mask.unsqueeze(1) | |
# 1. Timestep embeddings | |
timestep, embedded_timestep = self.adaln_single( | |
timestep, batch_size=batch_size, hidden_dtype=hidden_states.dtype | |
) | |
# 2. Patch embeddings | |
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1) | |
hidden_states = self.pos_embed(hidden_states) | |
hidden_states = hidden_states.unflatten(0, (batch_size, -1)).flatten(1, 2) | |
encoder_hidden_states = self.caption_projection(encoder_hidden_states) | |
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, encoder_hidden_states.shape[-1]) | |
# 3. Transformer blocks | |
for i, block in enumerate(self.transformer_blocks): | |
# TODO(aryan): Implement gradient checkpointing | |
if torch.is_grad_enabled() and self.gradient_checkpointing: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(block), | |
hidden_states, | |
encoder_hidden_states, | |
timestep, | |
attention_mask, | |
encoder_attention_mask, | |
image_rotary_emb, | |
**ckpt_kwargs, | |
) | |
else: | |
hidden_states = block( | |
hidden_states=hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
temb=timestep, | |
attention_mask=attention_mask, | |
encoder_attention_mask=encoder_attention_mask, | |
image_rotary_emb=image_rotary_emb, | |
) | |
# 4. Output normalization & projection | |
shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1) | |
hidden_states = self.norm_out(hidden_states) | |
# Modulation | |
hidden_states = hidden_states * (1 + scale) + shift | |
hidden_states = self.proj_out(hidden_states) | |
hidden_states = hidden_states.squeeze(1) | |
# 5. Unpatchify | |
hidden_states = hidden_states.reshape( | |
batch_size, post_patch_num_frames, post_patch_height, post_patch_width, p_t, p, p, -1 | |
) | |
hidden_states = hidden_states.permute(0, 7, 1, 4, 2, 5, 3, 6) | |
output = hidden_states.reshape(batch_size, -1, num_frames, height, width) | |
if not return_dict: | |
return (output,) | |
return Transformer2DModelOutput(sample=output) | |