ICEdit / icedit /diffusers /models /transformers /transformer_cogview3plus.py
RiverZ's picture
upd
3b609b9
raw
history blame
16.3 kB
# Copyright 2024 The CogView team, Tsinghua University & ZhipuAI and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, Union
import torch
import torch.nn as nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models.attention import FeedForward
from ...models.attention_processor import (
Attention,
AttentionProcessor,
CogVideoXAttnProcessor2_0,
)
from ...models.modeling_utils import ModelMixin
from ...models.normalization import AdaLayerNormContinuous
from ...utils import is_torch_version, logging
from ..embeddings import CogView3CombinedTimestepSizeEmbeddings, CogView3PlusPatchEmbed
from ..modeling_outputs import Transformer2DModelOutput
from ..normalization import CogView3PlusAdaLayerNormZeroTextImage
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class CogView3PlusTransformerBlock(nn.Module):
r"""
Transformer block used in [CogView](https://github.com/THUDM/CogView3) model.
Args:
dim (`int`):
The number of channels in the input and output.
num_attention_heads (`int`):
The number of heads to use for multi-head attention.
attention_head_dim (`int`):
The number of channels in each head.
time_embed_dim (`int`):
The number of channels in timestep embedding.
"""
def __init__(
self,
dim: int = 2560,
num_attention_heads: int = 64,
attention_head_dim: int = 40,
time_embed_dim: int = 512,
):
super().__init__()
self.norm1 = CogView3PlusAdaLayerNormZeroTextImage(embedding_dim=time_embed_dim, dim=dim)
self.attn1 = Attention(
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
out_dim=dim,
bias=True,
qk_norm="layer_norm",
elementwise_affine=False,
eps=1e-6,
processor=CogVideoXAttnProcessor2_0(),
)
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-5)
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-5)
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
emb: torch.Tensor,
) -> torch.Tensor:
text_seq_length = encoder_hidden_states.size(1)
# norm & modulate
(
norm_hidden_states,
gate_msa,
shift_mlp,
scale_mlp,
gate_mlp,
norm_encoder_hidden_states,
c_gate_msa,
c_shift_mlp,
c_scale_mlp,
c_gate_mlp,
) = self.norm1(hidden_states, encoder_hidden_states, emb)
# attention
attn_hidden_states, attn_encoder_hidden_states = self.attn1(
hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states
)
hidden_states = hidden_states + gate_msa.unsqueeze(1) * attn_hidden_states
encoder_hidden_states = encoder_hidden_states + c_gate_msa.unsqueeze(1) * attn_encoder_hidden_states
# norm & modulate
norm_hidden_states = self.norm2(hidden_states)
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
# feed-forward
norm_hidden_states = torch.cat([norm_encoder_hidden_states, norm_hidden_states], dim=1)
ff_output = self.ff(norm_hidden_states)
hidden_states = hidden_states + gate_mlp.unsqueeze(1) * ff_output[:, text_seq_length:]
encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * ff_output[:, :text_seq_length]
if hidden_states.dtype == torch.float16:
hidden_states = hidden_states.clip(-65504, 65504)
if encoder_hidden_states.dtype == torch.float16:
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
return hidden_states, encoder_hidden_states
class CogView3PlusTransformer2DModel(ModelMixin, ConfigMixin):
r"""
The Transformer model introduced in [CogView3: Finer and Faster Text-to-Image Generation via Relay
Diffusion](https://huggingface.co/papers/2403.05121).
Args:
patch_size (`int`, defaults to `2`):
The size of the patches to use in the patch embedding layer.
in_channels (`int`, defaults to `16`):
The number of channels in the input.
num_layers (`int`, defaults to `30`):
The number of layers of Transformer blocks to use.
attention_head_dim (`int`, defaults to `40`):
The number of channels in each head.
num_attention_heads (`int`, defaults to `64`):
The number of heads to use for multi-head attention.
out_channels (`int`, defaults to `16`):
The number of channels in the output.
text_embed_dim (`int`, defaults to `4096`):
Input dimension of text embeddings from the text encoder.
time_embed_dim (`int`, defaults to `512`):
Output dimension of timestep embeddings.
condition_dim (`int`, defaults to `256`):
The embedding dimension of the input SDXL-style resolution conditions (original_size, target_size,
crop_coords).
pos_embed_max_size (`int`, defaults to `128`):
The maximum resolution of the positional embeddings, from which slices of shape `H x W` are taken and added
to input patched latents, where `H` and `W` are the latent height and width respectively. A value of 128
means that the maximum supported height and width for image generation is `128 * vae_scale_factor *
patch_size => 128 * 8 * 2 => 2048`.
sample_size (`int`, defaults to `128`):
The base resolution of input latents. If height/width is not provided during generation, this value is used
to determine the resolution as `sample_size * vae_scale_factor => 128 * 8 => 1024`
"""
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
patch_size: int = 2,
in_channels: int = 16,
num_layers: int = 30,
attention_head_dim: int = 40,
num_attention_heads: int = 64,
out_channels: int = 16,
text_embed_dim: int = 4096,
time_embed_dim: int = 512,
condition_dim: int = 256,
pos_embed_max_size: int = 128,
sample_size: int = 128,
):
super().__init__()
self.out_channels = out_channels
self.inner_dim = num_attention_heads * attention_head_dim
# CogView3 uses 3 additional SDXL-like conditions - original_size, target_size, crop_coords
# Each of these are sincos embeddings of shape 2 * condition_dim
self.pooled_projection_dim = 3 * 2 * condition_dim
self.patch_embed = CogView3PlusPatchEmbed(
in_channels=in_channels,
hidden_size=self.inner_dim,
patch_size=patch_size,
text_hidden_size=text_embed_dim,
pos_embed_max_size=pos_embed_max_size,
)
self.time_condition_embed = CogView3CombinedTimestepSizeEmbeddings(
embedding_dim=time_embed_dim,
condition_dim=condition_dim,
pooled_projection_dim=self.pooled_projection_dim,
timesteps_dim=self.inner_dim,
)
self.transformer_blocks = nn.ModuleList(
[
CogView3PlusTransformerBlock(
dim=self.inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
time_embed_dim=time_embed_dim,
)
for _ in range(num_layers)
]
)
self.norm_out = AdaLayerNormContinuous(
embedding_dim=self.inner_dim,
conditioning_embedding_dim=time_embed_dim,
elementwise_affine=False,
eps=1e-6,
)
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
self.gradient_checkpointing = False
@property
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
if hasattr(module, "get_processor"):
processors[f"{name}.processor"] = module.get_processor()
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
def _set_gradient_checkpointing(self, module, value=False):
if hasattr(module, "gradient_checkpointing"):
module.gradient_checkpointing = value
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
timestep: torch.LongTensor,
original_size: torch.Tensor,
target_size: torch.Tensor,
crop_coords: torch.Tensor,
return_dict: bool = True,
) -> Union[torch.Tensor, Transformer2DModelOutput]:
"""
The [`CogView3PlusTransformer2DModel`] forward method.
Args:
hidden_states (`torch.Tensor`):
Input `hidden_states` of shape `(batch size, channel, height, width)`.
encoder_hidden_states (`torch.Tensor`):
Conditional embeddings (embeddings computed from the input conditions such as prompts) of shape
`(batch_size, sequence_len, text_embed_dim)`
timestep (`torch.LongTensor`):
Used to indicate denoising step.
original_size (`torch.Tensor`):
CogView3 uses SDXL-like micro-conditioning for original image size as explained in section 2.2 of
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
target_size (`torch.Tensor`):
CogView3 uses SDXL-like micro-conditioning for target image size as explained in section 2.2 of
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
crop_coords (`torch.Tensor`):
CogView3 uses SDXL-like micro-conditioning for crop coordinates as explained in section 2.2 of
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
tuple.
Returns:
`torch.Tensor` or [`~models.transformer_2d.Transformer2DModelOutput`]:
The denoised latents using provided inputs as conditioning.
"""
height, width = hidden_states.shape[-2:]
text_seq_length = encoder_hidden_states.shape[1]
hidden_states = self.patch_embed(
hidden_states, encoder_hidden_states
) # takes care of adding positional embeddings too.
emb = self.time_condition_embed(timestep, original_size, target_size, crop_coords, hidden_states.dtype)
encoder_hidden_states = hidden_states[:, :text_seq_length]
hidden_states = hidden_states[:, text_seq_length:]
for index_block, block in enumerate(self.transformer_blocks):
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
encoder_hidden_states,
emb,
**ckpt_kwargs,
)
else:
hidden_states, encoder_hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
emb=emb,
)
hidden_states = self.norm_out(hidden_states, emb)
hidden_states = self.proj_out(hidden_states) # (batch_size, height*width, patch_size*patch_size*out_channels)
# unpatchify
patch_size = self.config.patch_size
height = height // patch_size
width = width // patch_size
hidden_states = hidden_states.reshape(
shape=(hidden_states.shape[0], height, width, self.out_channels, patch_size, patch_size)
)
hidden_states = torch.einsum("nhwcpq->nchpwq", hidden_states)
output = hidden_states.reshape(
shape=(hidden_states.shape[0], self.out_channels, height * patch_size, width * patch_size)
)
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)