# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, Optional, Tuple, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...loaders import PeftAdapterMixin from ...utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers from ..attention_processor import ( Attention, AttentionProcessor, AttnProcessor2_0, SanaLinearAttnProcessor2_0, ) from ..embeddings import PatchEmbed, PixArtAlphaTextProjection from ..modeling_outputs import Transformer2DModelOutput from ..modeling_utils import ModelMixin from ..normalization import AdaLayerNormSingle, RMSNorm logger = logging.get_logger(__name__) # pylint: disable=invalid-name class GLUMBConv(nn.Module): def __init__( self, in_channels: int, out_channels: int, expand_ratio: float = 4, norm_type: Optional[str] = None, residual_connection: bool = True, ) -> None: super().__init__() hidden_channels = int(expand_ratio * in_channels) self.norm_type = norm_type self.residual_connection = residual_connection self.nonlinearity = nn.SiLU() self.conv_inverted = nn.Conv2d(in_channels, hidden_channels * 2, 1, 1, 0) self.conv_depth = nn.Conv2d(hidden_channels * 2, hidden_channels * 2, 3, 1, 1, groups=hidden_channels * 2) self.conv_point = nn.Conv2d(hidden_channels, out_channels, 1, 1, 0, bias=False) self.norm = None if norm_type == "rms_norm": self.norm = RMSNorm(out_channels, eps=1e-5, elementwise_affine=True, bias=True) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: if self.residual_connection: residual = hidden_states hidden_states = self.conv_inverted(hidden_states) hidden_states = self.nonlinearity(hidden_states) hidden_states = self.conv_depth(hidden_states) hidden_states, gate = torch.chunk(hidden_states, 2, dim=1) hidden_states = hidden_states * self.nonlinearity(gate) hidden_states = self.conv_point(hidden_states) if self.norm_type == "rms_norm": # move channel to the last dimension so we apply RMSnorm across channel dimension hidden_states = self.norm(hidden_states.movedim(1, -1)).movedim(-1, 1) if self.residual_connection: hidden_states = hidden_states + residual return hidden_states class SanaTransformerBlock(nn.Module): r""" Transformer block introduced in [Sana](https://huggingface.co/papers/2410.10629). """ def __init__( self, dim: int = 2240, num_attention_heads: int = 70, attention_head_dim: int = 32, dropout: float = 0.0, num_cross_attention_heads: Optional[int] = 20, cross_attention_head_dim: Optional[int] = 112, cross_attention_dim: Optional[int] = 2240, attention_bias: bool = True, norm_elementwise_affine: bool = False, norm_eps: float = 1e-6, attention_out_bias: bool = True, mlp_ratio: float = 2.5, ) -> None: super().__init__() # 1. Self Attention self.norm1 = nn.LayerNorm(dim, elementwise_affine=False, eps=norm_eps) self.attn1 = Attention( query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, cross_attention_dim=None, processor=SanaLinearAttnProcessor2_0(), ) # 2. Cross Attention if cross_attention_dim is not None: self.norm2 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) self.attn2 = Attention( query_dim=dim, cross_attention_dim=cross_attention_dim, heads=num_cross_attention_heads, dim_head=cross_attention_head_dim, dropout=dropout, bias=True, out_bias=attention_out_bias, processor=AttnProcessor2_0(), ) # 3. Feed-forward self.ff = GLUMBConv(dim, dim, mlp_ratio, norm_type=None, residual_connection=False) self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, timestep: Optional[torch.LongTensor] = None, height: int = None, width: int = None, ) -> torch.Tensor: batch_size = hidden_states.shape[0] # 1. Modulation shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1) ).chunk(6, dim=1) # 2. Self Attention norm_hidden_states = self.norm1(hidden_states) norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa norm_hidden_states = norm_hidden_states.to(hidden_states.dtype) attn_output = self.attn1(norm_hidden_states) hidden_states = hidden_states + gate_msa * attn_output # 3. Cross Attention if self.attn2 is not None: attn_output = self.attn2( hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=encoder_attention_mask, ) hidden_states = attn_output + hidden_states # 4. Feed-forward norm_hidden_states = self.norm2(hidden_states) norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp norm_hidden_states = norm_hidden_states.unflatten(1, (height, width)).permute(0, 3, 1, 2) ff_output = self.ff(norm_hidden_states) ff_output = ff_output.flatten(2, 3).permute(0, 2, 1) hidden_states = hidden_states + gate_mlp * ff_output return hidden_states class SanaTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin): r""" A 2D Transformer model introduced in [Sana](https://huggingface.co/papers/2410.10629) family of models. Args: in_channels (`int`, defaults to `32`): The number of channels in the input. out_channels (`int`, *optional*, defaults to `32`): The number of channels in the output. num_attention_heads (`int`, defaults to `70`): The number of heads to use for multi-head attention. attention_head_dim (`int`, defaults to `32`): The number of channels in each head. num_layers (`int`, defaults to `20`): The number of layers of Transformer blocks to use. num_cross_attention_heads (`int`, *optional*, defaults to `20`): The number of heads to use for cross-attention. cross_attention_head_dim (`int`, *optional*, defaults to `112`): The number of channels in each head for cross-attention. cross_attention_dim (`int`, *optional*, defaults to `2240`): The number of channels in the cross-attention output. caption_channels (`int`, defaults to `2304`): The number of channels in the caption embeddings. mlp_ratio (`float`, defaults to `2.5`): The expansion ratio to use in the GLUMBConv layer. dropout (`float`, defaults to `0.0`): The dropout probability. attention_bias (`bool`, defaults to `False`): Whether to use bias in the attention layer. sample_size (`int`, defaults to `32`): The base size of the input latent. patch_size (`int`, defaults to `1`): The size of the patches to use in the patch embedding layer. norm_elementwise_affine (`bool`, defaults to `False`): Whether to use elementwise affinity in the normalization layer. norm_eps (`float`, defaults to `1e-6`): The epsilon value for the normalization layer. """ _supports_gradient_checkpointing = True _no_split_modules = ["SanaTransformerBlock", "PatchEmbed"] @register_to_config def __init__( self, in_channels: int = 32, out_channels: Optional[int] = 32, num_attention_heads: int = 70, attention_head_dim: int = 32, num_layers: int = 20, num_cross_attention_heads: Optional[int] = 20, cross_attention_head_dim: Optional[int] = 112, cross_attention_dim: Optional[int] = 2240, caption_channels: int = 2304, mlp_ratio: float = 2.5, dropout: float = 0.0, attention_bias: bool = False, sample_size: int = 32, patch_size: int = 1, norm_elementwise_affine: bool = False, norm_eps: float = 1e-6, interpolation_scale: Optional[int] = None, ) -> None: super().__init__() out_channels = out_channels or in_channels inner_dim = num_attention_heads * attention_head_dim # 1. Patch Embedding interpolation_scale = interpolation_scale if interpolation_scale is not None else max(sample_size // 64, 1) self.patch_embed = PatchEmbed( height=sample_size, width=sample_size, patch_size=patch_size, in_channels=in_channels, embed_dim=inner_dim, interpolation_scale=interpolation_scale, ) # 2. Additional condition embeddings self.time_embed = AdaLayerNormSingle(inner_dim) self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim) self.caption_norm = RMSNorm(inner_dim, eps=1e-5, elementwise_affine=True) # 3. Transformer blocks self.transformer_blocks = nn.ModuleList( [ SanaTransformerBlock( inner_dim, num_attention_heads, attention_head_dim, dropout=dropout, num_cross_attention_heads=num_cross_attention_heads, cross_attention_head_dim=cross_attention_head_dim, cross_attention_dim=cross_attention_dim, attention_bias=attention_bias, norm_elementwise_affine=norm_elementwise_affine, norm_eps=norm_eps, mlp_ratio=mlp_ratio, ) for _ in range(num_layers) ] ) # 4. Output blocks self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5) self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6) self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * out_channels) self.gradient_checkpointing = False def _set_gradient_checkpointing(self, module, value=False): if hasattr(module, "gradient_checkpointing"): module.gradient_checkpointing = value @property # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors def attn_processors(self) -> Dict[str, AttentionProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {} def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): if hasattr(module, "get_processor"): processors[f"{name}.processor"] = module.get_processor() for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): fn_recursive_add_processors(name, module, processors) return processors # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): r""" Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ count = len(self.attn_processors.keys()) if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor) def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, timestep: torch.LongTensor, encoder_attention_mask: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, attention_kwargs: Optional[Dict[str, Any]] = None, return_dict: bool = True, ) -> Union[Tuple[torch.Tensor, ...], Transformer2DModelOutput]: if attention_kwargs is not None: attention_kwargs = attention_kwargs.copy() lora_scale = attention_kwargs.pop("scale", 1.0) else: lora_scale = 1.0 if USE_PEFT_BACKEND: # weight the lora layers by setting `lora_scale` for each PEFT layer scale_lora_layers(self, lora_scale) else: if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None: logger.warning( "Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective." ) # ensure attention_mask is a bias, and give it a singleton query_tokens dimension. # we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward. # we can tell by counting dims; if ndim == 2: it's a mask rather than a bias. # expects mask of shape: # [batch, key_tokens] # adds singleton query_tokens dimension: # [batch, 1, key_tokens] # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) if attention_mask is not None and attention_mask.ndim == 2: # assume that mask is expressed as: # (1 = keep, 0 = discard) # convert mask into a bias that can be added to attention scores: # (keep = +0, discard = -10000.0) attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0 attention_mask = attention_mask.unsqueeze(1) # convert encoder_attention_mask to a bias the same way we do for attention_mask if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2: encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0 encoder_attention_mask = encoder_attention_mask.unsqueeze(1) # 1. Input batch_size, num_channels, height, width = hidden_states.shape p = self.config.patch_size post_patch_height, post_patch_width = height // p, width // p hidden_states = self.patch_embed(hidden_states) timestep, embedded_timestep = self.time_embed( timestep, batch_size=batch_size, hidden_dtype=hidden_states.dtype ) encoder_hidden_states = self.caption_projection(encoder_hidden_states) encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1]) encoder_hidden_states = self.caption_norm(encoder_hidden_states) # 2. Transformer blocks if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} for block in self.transformer_blocks: hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, timestep, post_patch_height, post_patch_width, **ckpt_kwargs, ) else: for block in self.transformer_blocks: hidden_states = block( hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, timestep, post_patch_height, post_patch_width, ) # 3. Normalization shift, scale = ( self.scale_shift_table[None] + embedded_timestep[:, None].to(self.scale_shift_table.device) ).chunk(2, dim=1) hidden_states = self.norm_out(hidden_states) # 4. Modulation hidden_states = hidden_states * (1 + scale) + shift hidden_states = self.proj_out(hidden_states) # 5. Unpatchify hidden_states = hidden_states.reshape( batch_size, post_patch_height, post_patch_width, self.config.patch_size, self.config.patch_size, -1 ) hidden_states = hidden_states.permute(0, 5, 1, 3, 2, 4) output = hidden_states.reshape(batch_size, -1, post_patch_height * p, post_patch_width * p) if USE_PEFT_BACKEND: # remove `lora_scale` from each PEFT layer unscale_lora_layers(self, lora_scale) if not return_dict: return (output,) return Transformer2DModelOutput(sample=output)