# Copyright 2024 The Hunyuan Team and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, List, Optional, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F from diffusers.loaders import FromOriginalModelMixin from ...configuration_utils import ConfigMixin, register_to_config from ...loaders import PeftAdapterMixin from ...utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers from ..attention import FeedForward from ..attention_processor import Attention, AttentionProcessor from ..embeddings import ( CombinedTimestepGuidanceTextProjEmbeddings, CombinedTimestepTextProjEmbeddings, get_1d_rotary_pos_embed, ) from ..modeling_outputs import Transformer2DModelOutput from ..modeling_utils import ModelMixin from ..normalization import AdaLayerNormContinuous, AdaLayerNormZero, AdaLayerNormZeroSingle logger = logging.get_logger(__name__) # pylint: disable=invalid-name class HunyuanVideoAttnProcessor2_0: def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "HunyuanVideoAttnProcessor2_0 requires PyTorch 2.0. To use it, please upgrade PyTorch to 2.0." ) def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, ) -> torch.Tensor: if attn.add_q_proj is None and encoder_hidden_states is not None: hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1) # 1. QKV projections query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) query = query.unflatten(2, (attn.heads, -1)).transpose(1, 2) key = key.unflatten(2, (attn.heads, -1)).transpose(1, 2) value = value.unflatten(2, (attn.heads, -1)).transpose(1, 2) # 2. QK normalization if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # 3. Rotational positional embeddings applied to latent stream if image_rotary_emb is not None: from ..embeddings import apply_rotary_emb if attn.add_q_proj is None and encoder_hidden_states is not None: query = torch.cat( [ apply_rotary_emb(query[:, :, : -encoder_hidden_states.shape[1]], image_rotary_emb), query[:, :, -encoder_hidden_states.shape[1] :], ], dim=2, ) key = torch.cat( [ apply_rotary_emb(key[:, :, : -encoder_hidden_states.shape[1]], image_rotary_emb), key[:, :, -encoder_hidden_states.shape[1] :], ], dim=2, ) else: query = apply_rotary_emb(query, image_rotary_emb) key = apply_rotary_emb(key, image_rotary_emb) # 4. Encoder condition QKV projection and normalization if attn.add_q_proj is not None and encoder_hidden_states is not None: encoder_query = attn.add_q_proj(encoder_hidden_states) encoder_key = attn.add_k_proj(encoder_hidden_states) encoder_value = attn.add_v_proj(encoder_hidden_states) encoder_query = encoder_query.unflatten(2, (attn.heads, -1)).transpose(1, 2) encoder_key = encoder_key.unflatten(2, (attn.heads, -1)).transpose(1, 2) encoder_value = encoder_value.unflatten(2, (attn.heads, -1)).transpose(1, 2) if attn.norm_added_q is not None: encoder_query = attn.norm_added_q(encoder_query) if attn.norm_added_k is not None: encoder_key = attn.norm_added_k(encoder_key) query = torch.cat([query, encoder_query], dim=2) key = torch.cat([key, encoder_key], dim=2) value = torch.cat([value, encoder_value], dim=2) # 5. Attention hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).flatten(2, 3) hidden_states = hidden_states.to(query.dtype) # 6. Output projection if encoder_hidden_states is not None: hidden_states, encoder_hidden_states = ( hidden_states[:, : -encoder_hidden_states.shape[1]], hidden_states[:, -encoder_hidden_states.shape[1] :], ) if getattr(attn, "to_out", None) is not None: hidden_states = attn.to_out[0](hidden_states) hidden_states = attn.to_out[1](hidden_states) if getattr(attn, "to_add_out", None) is not None: encoder_hidden_states = attn.to_add_out(encoder_hidden_states) return hidden_states, encoder_hidden_states class HunyuanVideoPatchEmbed(nn.Module): def __init__( self, patch_size: Union[int, Tuple[int, int, int]] = 16, in_chans: int = 3, embed_dim: int = 768, ) -> None: super().__init__() patch_size = (patch_size, patch_size, patch_size) if isinstance(patch_size, int) else patch_size self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.proj(hidden_states) hidden_states = hidden_states.flatten(2).transpose(1, 2) # BCFHW -> BNC return hidden_states class HunyuanVideoAdaNorm(nn.Module): def __init__(self, in_features: int, out_features: Optional[int] = None) -> None: super().__init__() out_features = out_features or 2 * in_features self.linear = nn.Linear(in_features, out_features) self.nonlinearity = nn.SiLU() def forward( self, temb: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: temb = self.linear(self.nonlinearity(temb)) gate_msa, gate_mlp = temb.chunk(2, dim=1) gate_msa, gate_mlp = gate_msa.unsqueeze(1), gate_mlp.unsqueeze(1) return gate_msa, gate_mlp class HunyuanVideoIndividualTokenRefinerBlock(nn.Module): def __init__( self, num_attention_heads: int, attention_head_dim: int, mlp_width_ratio: str = 4.0, mlp_drop_rate: float = 0.0, attention_bias: bool = True, ) -> None: super().__init__() hidden_size = num_attention_heads * attention_head_dim self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6) self.attn = Attention( query_dim=hidden_size, cross_attention_dim=None, heads=num_attention_heads, dim_head=attention_head_dim, bias=attention_bias, ) self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6) self.ff = FeedForward(hidden_size, mult=mlp_width_ratio, activation_fn="linear-silu", dropout=mlp_drop_rate) self.norm_out = HunyuanVideoAdaNorm(hidden_size, 2 * hidden_size) def forward( self, hidden_states: torch.Tensor, temb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: norm_hidden_states = self.norm1(hidden_states) attn_output = self.attn( hidden_states=norm_hidden_states, encoder_hidden_states=None, attention_mask=attention_mask, ) gate_msa, gate_mlp = self.norm_out(temb) hidden_states = hidden_states + attn_output * gate_msa ff_output = self.ff(self.norm2(hidden_states)) hidden_states = hidden_states + ff_output * gate_mlp return hidden_states class HunyuanVideoIndividualTokenRefiner(nn.Module): def __init__( self, num_attention_heads: int, attention_head_dim: int, num_layers: int, mlp_width_ratio: float = 4.0, mlp_drop_rate: float = 0.0, attention_bias: bool = True, ) -> None: super().__init__() self.refiner_blocks = nn.ModuleList( [ HunyuanVideoIndividualTokenRefinerBlock( num_attention_heads=num_attention_heads, attention_head_dim=attention_head_dim, mlp_width_ratio=mlp_width_ratio, mlp_drop_rate=mlp_drop_rate, attention_bias=attention_bias, ) for _ in range(num_layers) ] ) def forward( self, hidden_states: torch.Tensor, temb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, ) -> None: self_attn_mask = None if attention_mask is not None: batch_size = attention_mask.shape[0] seq_len = attention_mask.shape[1] attention_mask = attention_mask.to(hidden_states.device).bool() self_attn_mask_1 = attention_mask.view(batch_size, 1, 1, seq_len).repeat(1, 1, seq_len, 1) self_attn_mask_2 = self_attn_mask_1.transpose(2, 3) self_attn_mask = (self_attn_mask_1 & self_attn_mask_2).bool() self_attn_mask[:, :, :, 0] = True for block in self.refiner_blocks: hidden_states = block(hidden_states, temb, self_attn_mask) return hidden_states class HunyuanVideoTokenRefiner(nn.Module): def __init__( self, in_channels: int, num_attention_heads: int, attention_head_dim: int, num_layers: int, mlp_ratio: float = 4.0, mlp_drop_rate: float = 0.0, attention_bias: bool = True, ) -> None: super().__init__() hidden_size = num_attention_heads * attention_head_dim self.time_text_embed = CombinedTimestepTextProjEmbeddings( embedding_dim=hidden_size, pooled_projection_dim=in_channels ) self.proj_in = nn.Linear(in_channels, hidden_size, bias=True) self.token_refiner = HunyuanVideoIndividualTokenRefiner( num_attention_heads=num_attention_heads, attention_head_dim=attention_head_dim, num_layers=num_layers, mlp_width_ratio=mlp_ratio, mlp_drop_rate=mlp_drop_rate, attention_bias=attention_bias, ) def forward( self, hidden_states: torch.Tensor, timestep: torch.LongTensor, attention_mask: Optional[torch.LongTensor] = None, ) -> torch.Tensor: if attention_mask is None: pooled_projections = hidden_states.mean(dim=1) else: original_dtype = hidden_states.dtype mask_float = attention_mask.float().unsqueeze(-1) pooled_projections = (hidden_states * mask_float).sum(dim=1) / mask_float.sum(dim=1) pooled_projections = pooled_projections.to(original_dtype) temb = self.time_text_embed(timestep, pooled_projections) hidden_states = self.proj_in(hidden_states) hidden_states = self.token_refiner(hidden_states, temb, attention_mask) return hidden_states class HunyuanVideoRotaryPosEmbed(nn.Module): def __init__(self, patch_size: int, patch_size_t: int, rope_dim: List[int], theta: float = 256.0) -> None: super().__init__() self.patch_size = patch_size self.patch_size_t = patch_size_t self.rope_dim = rope_dim self.theta = theta def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: batch_size, num_channels, num_frames, height, width = hidden_states.shape rope_sizes = [num_frames // self.patch_size_t, height // self.patch_size, width // self.patch_size] axes_grids = [] for i in range(3): # Note: The following line diverges from original behaviour. We create the grid on the device, whereas # original implementation creates it on CPU and then moves it to device. This results in numerical # differences in layerwise debugging outputs, but visually it is the same. grid = torch.arange(0, rope_sizes[i], device=hidden_states.device, dtype=torch.float32) axes_grids.append(grid) grid = torch.meshgrid(*axes_grids, indexing="ij") # [W, H, T] grid = torch.stack(grid, dim=0) # [3, W, H, T] freqs = [] for i in range(3): freq = get_1d_rotary_pos_embed(self.rope_dim[i], grid[i].reshape(-1), self.theta, use_real=True) freqs.append(freq) freqs_cos = torch.cat([f[0] for f in freqs], dim=1) # (W * H * T, D / 2) freqs_sin = torch.cat([f[1] for f in freqs], dim=1) # (W * H * T, D / 2) return freqs_cos, freqs_sin class HunyuanVideoSingleTransformerBlock(nn.Module): def __init__( self, num_attention_heads: int, attention_head_dim: int, mlp_ratio: float = 4.0, qk_norm: str = "rms_norm", ) -> None: super().__init__() hidden_size = num_attention_heads * attention_head_dim mlp_dim = int(hidden_size * mlp_ratio) self.attn = Attention( query_dim=hidden_size, cross_attention_dim=None, dim_head=attention_head_dim, heads=num_attention_heads, out_dim=hidden_size, bias=True, processor=HunyuanVideoAttnProcessor2_0(), qk_norm=qk_norm, eps=1e-6, pre_only=True, ) self.norm = AdaLayerNormZeroSingle(hidden_size, norm_type="layer_norm") self.proj_mlp = nn.Linear(hidden_size, mlp_dim) self.act_mlp = nn.GELU(approximate="tanh") self.proj_out = nn.Linear(hidden_size + mlp_dim, hidden_size) def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, temb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, ) -> torch.Tensor: text_seq_length = encoder_hidden_states.shape[1] hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1) residual = hidden_states # 1. Input normalization norm_hidden_states, gate = self.norm(hidden_states, emb=temb) mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states)) norm_hidden_states, norm_encoder_hidden_states = ( norm_hidden_states[:, :-text_seq_length, :], norm_hidden_states[:, -text_seq_length:, :], ) # 2. Attention attn_output, context_attn_output = self.attn( hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states, attention_mask=attention_mask, image_rotary_emb=image_rotary_emb, ) attn_output = torch.cat([attn_output, context_attn_output], dim=1) # 3. Modulation and residual connection hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2) hidden_states = gate.unsqueeze(1) * self.proj_out(hidden_states) hidden_states = hidden_states + residual hidden_states, encoder_hidden_states = ( hidden_states[:, :-text_seq_length, :], hidden_states[:, -text_seq_length:, :], ) return hidden_states, encoder_hidden_states class HunyuanVideoTransformerBlock(nn.Module): def __init__( self, num_attention_heads: int, attention_head_dim: int, mlp_ratio: float, qk_norm: str = "rms_norm", ) -> None: super().__init__() hidden_size = num_attention_heads * attention_head_dim self.norm1 = AdaLayerNormZero(hidden_size, norm_type="layer_norm") self.norm1_context = AdaLayerNormZero(hidden_size, norm_type="layer_norm") self.attn = Attention( query_dim=hidden_size, cross_attention_dim=None, added_kv_proj_dim=hidden_size, dim_head=attention_head_dim, heads=num_attention_heads, out_dim=hidden_size, context_pre_only=False, bias=True, processor=HunyuanVideoAttnProcessor2_0(), qk_norm=qk_norm, eps=1e-6, ) self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.ff = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate") self.norm2_context = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.ff_context = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate") def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, temb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, freqs_cis: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: # 1. Input normalization norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb) norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context( encoder_hidden_states, emb=temb ) # 2. Joint attention attn_output, context_attn_output = self.attn( hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states, attention_mask=attention_mask, image_rotary_emb=freqs_cis, ) # 3. Modulation and residual connection hidden_states = hidden_states + attn_output * gate_msa.unsqueeze(1) encoder_hidden_states = encoder_hidden_states + context_attn_output * c_gate_msa.unsqueeze(1) norm_hidden_states = self.norm2(hidden_states) norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states) norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None] # 4. Feed-forward ff_output = self.ff(norm_hidden_states) context_ff_output = self.ff_context(norm_encoder_hidden_states) hidden_states = hidden_states + gate_mlp.unsqueeze(1) * ff_output encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output return hidden_states, encoder_hidden_states class HunyuanVideoTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin): r""" A Transformer model for video-like data used in [HunyuanVideo](https://huggingface.co/tencent/HunyuanVideo). Args: in_channels (`int`, defaults to `16`): The number of channels in the input. out_channels (`int`, defaults to `16`): The number of channels in the output. num_attention_heads (`int`, defaults to `24`): The number of heads to use for multi-head attention. attention_head_dim (`int`, defaults to `128`): The number of channels in each head. num_layers (`int`, defaults to `20`): The number of layers of dual-stream blocks to use. num_single_layers (`int`, defaults to `40`): The number of layers of single-stream blocks to use. num_refiner_layers (`int`, defaults to `2`): The number of layers of refiner blocks to use. mlp_ratio (`float`, defaults to `4.0`): The ratio of the hidden layer size to the input size in the feedforward network. patch_size (`int`, defaults to `2`): The size of the spatial patches to use in the patch embedding layer. patch_size_t (`int`, defaults to `1`): The size of the tmeporal patches to use in the patch embedding layer. qk_norm (`str`, defaults to `rms_norm`): The normalization to use for the query and key projections in the attention layers. guidance_embeds (`bool`, defaults to `True`): Whether to use guidance embeddings in the model. text_embed_dim (`int`, defaults to `4096`): Input dimension of text embeddings from the text encoder. pooled_projection_dim (`int`, defaults to `768`): The dimension of the pooled projection of the text embeddings. rope_theta (`float`, defaults to `256.0`): The value of theta to use in the RoPE layer. rope_axes_dim (`Tuple[int]`, defaults to `(16, 56, 56)`): The dimensions of the axes to use in the RoPE layer. """ _supports_gradient_checkpointing = True @register_to_config def __init__( self, in_channels: int = 16, out_channels: int = 16, num_attention_heads: int = 24, attention_head_dim: int = 128, num_layers: int = 20, num_single_layers: int = 40, num_refiner_layers: int = 2, mlp_ratio: float = 4.0, patch_size: int = 2, patch_size_t: int = 1, qk_norm: str = "rms_norm", guidance_embeds: bool = True, text_embed_dim: int = 4096, pooled_projection_dim: int = 768, rope_theta: float = 256.0, rope_axes_dim: Tuple[int] = (16, 56, 56), ) -> None: super().__init__() inner_dim = num_attention_heads * attention_head_dim out_channels = out_channels or in_channels # 1. Latent and condition embedders self.x_embedder = HunyuanVideoPatchEmbed((patch_size_t, patch_size, patch_size), in_channels, inner_dim) self.context_embedder = HunyuanVideoTokenRefiner( text_embed_dim, num_attention_heads, attention_head_dim, num_layers=num_refiner_layers ) self.time_text_embed = CombinedTimestepGuidanceTextProjEmbeddings(inner_dim, pooled_projection_dim) # 2. RoPE self.rope = HunyuanVideoRotaryPosEmbed(patch_size, patch_size_t, rope_axes_dim, rope_theta) # 3. Dual stream transformer blocks self.transformer_blocks = nn.ModuleList( [ HunyuanVideoTransformerBlock( num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm ) for _ in range(num_layers) ] ) # 4. Single stream transformer blocks self.single_transformer_blocks = nn.ModuleList( [ HunyuanVideoSingleTransformerBlock( num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm ) for _ in range(num_single_layers) ] ) # 5. Output projection self.norm_out = AdaLayerNormContinuous(inner_dim, inner_dim, elementwise_affine=False, eps=1e-6) self.proj_out = nn.Linear(inner_dim, patch_size_t * patch_size * patch_size * out_channels) self.gradient_checkpointing = False @property # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors def attn_processors(self) -> Dict[str, AttentionProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {} def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): if hasattr(module, "get_processor"): processors[f"{name}.processor"] = module.get_processor() for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): fn_recursive_add_processors(name, module, processors) return processors # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): r""" Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ count = len(self.attn_processors.keys()) if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor) def _set_gradient_checkpointing(self, module, value=False): if hasattr(module, "gradient_checkpointing"): module.gradient_checkpointing = value def forward( self, hidden_states: torch.Tensor, timestep: torch.LongTensor, encoder_hidden_states: torch.Tensor, encoder_attention_mask: torch.Tensor, pooled_projections: torch.Tensor, guidance: torch.Tensor = None, attention_kwargs: Optional[Dict[str, Any]] = None, return_dict: bool = True, ) -> Union[torch.Tensor, Dict[str, torch.Tensor]]: if attention_kwargs is not None: attention_kwargs = attention_kwargs.copy() lora_scale = attention_kwargs.pop("scale", 1.0) else: lora_scale = 1.0 if USE_PEFT_BACKEND: # weight the lora layers by setting `lora_scale` for each PEFT layer scale_lora_layers(self, lora_scale) else: if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None: logger.warning( "Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective." ) batch_size, num_channels, num_frames, height, width = hidden_states.shape p, p_t = self.config.patch_size, self.config.patch_size_t post_patch_num_frames = num_frames // p_t post_patch_height = height // p post_patch_width = width // p # 1. RoPE image_rotary_emb = self.rope(hidden_states) # 2. Conditional embeddings temb = self.time_text_embed(timestep, guidance, pooled_projections) hidden_states = self.x_embedder(hidden_states) encoder_hidden_states = self.context_embedder(encoder_hidden_states, timestep, encoder_attention_mask) # 3. Attention mask preparation latent_sequence_length = hidden_states.shape[1] condition_sequence_length = encoder_hidden_states.shape[1] sequence_length = latent_sequence_length + condition_sequence_length attention_mask = torch.zeros( batch_size, sequence_length, device=hidden_states.device, dtype=torch.bool ) # [B, N] effective_condition_sequence_length = encoder_attention_mask.sum(dim=1, dtype=torch.int) # [B,] effective_sequence_length = latent_sequence_length + effective_condition_sequence_length for i in range(batch_size): attention_mask[i, : effective_sequence_length[i]] = True # [B, 1, 1, N], for broadcasting across attention heads attention_mask = attention_mask.unsqueeze(1).unsqueeze(1) # 4. Transformer blocks if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} for block in self.transformer_blocks: hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, encoder_hidden_states, temb, attention_mask, image_rotary_emb, **ckpt_kwargs, ) for block in self.single_transformer_blocks: hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, encoder_hidden_states, temb, attention_mask, image_rotary_emb, **ckpt_kwargs, ) else: for block in self.transformer_blocks: hidden_states, encoder_hidden_states = block( hidden_states, encoder_hidden_states, temb, attention_mask, image_rotary_emb ) for block in self.single_transformer_blocks: hidden_states, encoder_hidden_states = block( hidden_states, encoder_hidden_states, temb, attention_mask, image_rotary_emb ) # 5. Output projection hidden_states = self.norm_out(hidden_states, temb) hidden_states = self.proj_out(hidden_states) hidden_states = hidden_states.reshape( batch_size, post_patch_num_frames, post_patch_height, post_patch_width, -1, p_t, p, p ) hidden_states = hidden_states.permute(0, 4, 1, 5, 2, 6, 3, 7) hidden_states = hidden_states.flatten(6, 7).flatten(4, 5).flatten(2, 3) if USE_PEFT_BACKEND: # remove `lora_scale` from each PEFT layer unscale_lora_layers(self, lora_scale) if not return_dict: return (hidden_states,) return Transformer2DModelOutput(sample=hidden_states)