# Copyright 2024 The Genmo team and The HuggingFace Team. # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from typing import Any, Dict, Optional, Tuple import torch import torch.nn as nn import torch.nn.functional as F from ...configuration_utils import ConfigMixin, register_to_config from ...loaders import FromOriginalModelMixin, PeftAdapterMixin from ...utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers from ...utils.torch_utils import maybe_allow_in_graph from ..attention import FeedForward from ..attention_processor import Attention from ..embeddings import PixArtAlphaTextProjection from ..modeling_outputs import Transformer2DModelOutput from ..modeling_utils import ModelMixin from ..normalization import AdaLayerNormSingle, RMSNorm logger = logging.get_logger(__name__) # pylint: disable=invalid-name class LTXVideoAttentionProcessor2_0: r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is used in the LTX model. It applies a normalization layer and rotary embedding on the query and key vector. """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "LTXVideoAttentionProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, ) -> torch.Tensor: batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if encoder_hidden_states is None: encoder_hidden_states = hidden_states query = attn.to_q(hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) query = attn.norm_q(query) key = attn.norm_k(key) if image_rotary_emb is not None: query = apply_rotary_emb(query, image_rotary_emb) key = apply_rotary_emb(key, image_rotary_emb) query = query.unflatten(2, (attn.heads, -1)).transpose(1, 2) key = key.unflatten(2, (attn.heads, -1)).transpose(1, 2) value = value.unflatten(2, (attn.heads, -1)).transpose(1, 2) hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).flatten(2, 3) hidden_states = hidden_states.to(query.dtype) hidden_states = attn.to_out[0](hidden_states) hidden_states = attn.to_out[1](hidden_states) return hidden_states class LTXVideoRotaryPosEmbed(nn.Module): def __init__( self, dim: int, base_num_frames: int = 20, base_height: int = 2048, base_width: int = 2048, patch_size: int = 1, patch_size_t: int = 1, theta: float = 10000.0, ) -> None: super().__init__() self.dim = dim self.base_num_frames = base_num_frames self.base_height = base_height self.base_width = base_width self.patch_size = patch_size self.patch_size_t = patch_size_t self.theta = theta def forward( self, hidden_states: torch.Tensor, num_frames: int, height: int, width: int, rope_interpolation_scale: Optional[Tuple[torch.Tensor, float, float]] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: batch_size = hidden_states.size(0) # Always compute rope in fp32 grid_h = torch.arange(height, dtype=torch.float32, device=hidden_states.device) grid_w = torch.arange(width, dtype=torch.float32, device=hidden_states.device) grid_f = torch.arange(num_frames, dtype=torch.float32, device=hidden_states.device) grid = torch.meshgrid(grid_f, grid_h, grid_w, indexing="ij") grid = torch.stack(grid, dim=0) grid = grid.unsqueeze(0).repeat(batch_size, 1, 1, 1, 1) if rope_interpolation_scale is not None: grid[:, 0:1] = grid[:, 0:1] * rope_interpolation_scale[0] * self.patch_size_t / self.base_num_frames grid[:, 1:2] = grid[:, 1:2] * rope_interpolation_scale[1] * self.patch_size / self.base_height grid[:, 2:3] = grid[:, 2:3] * rope_interpolation_scale[2] * self.patch_size / self.base_width grid = grid.flatten(2, 4).transpose(1, 2) start = 1.0 end = self.theta freqs = self.theta ** torch.linspace( math.log(start, self.theta), math.log(end, self.theta), self.dim // 6, device=hidden_states.device, dtype=torch.float32, ) freqs = freqs * math.pi / 2.0 freqs = freqs * (grid.unsqueeze(-1) * 2 - 1) freqs = freqs.transpose(-1, -2).flatten(2) cos_freqs = freqs.cos().repeat_interleave(2, dim=-1) sin_freqs = freqs.sin().repeat_interleave(2, dim=-1) if self.dim % 6 != 0: cos_padding = torch.ones_like(cos_freqs[:, :, : self.dim % 6]) sin_padding = torch.zeros_like(cos_freqs[:, :, : self.dim % 6]) cos_freqs = torch.cat([cos_padding, cos_freqs], dim=-1) sin_freqs = torch.cat([sin_padding, sin_freqs], dim=-1) return cos_freqs, sin_freqs @maybe_allow_in_graph class LTXVideoTransformerBlock(nn.Module): r""" Transformer block used in [LTX](https://huggingface.co/Lightricks/LTX-Video). Args: dim (`int`): The number of channels in the input and output. num_attention_heads (`int`): The number of heads to use for multi-head attention. attention_head_dim (`int`): The number of channels in each head. qk_norm (`str`, defaults to `"rms_norm"`): The normalization layer to use. activation_fn (`str`, defaults to `"gelu-approximate"`): Activation function to use in feed-forward. eps (`float`, defaults to `1e-6`): Epsilon value for normalization layers. """ def __init__( self, dim: int, num_attention_heads: int, attention_head_dim: int, cross_attention_dim: int, qk_norm: str = "rms_norm_across_heads", activation_fn: str = "gelu-approximate", attention_bias: bool = True, attention_out_bias: bool = True, eps: float = 1e-6, elementwise_affine: bool = False, ): super().__init__() self.norm1 = RMSNorm(dim, eps=eps, elementwise_affine=elementwise_affine) self.attn1 = Attention( query_dim=dim, heads=num_attention_heads, kv_heads=num_attention_heads, dim_head=attention_head_dim, bias=attention_bias, cross_attention_dim=None, out_bias=attention_out_bias, qk_norm=qk_norm, processor=LTXVideoAttentionProcessor2_0(), ) self.norm2 = RMSNorm(dim, eps=eps, elementwise_affine=elementwise_affine) self.attn2 = Attention( query_dim=dim, cross_attention_dim=cross_attention_dim, heads=num_attention_heads, kv_heads=num_attention_heads, dim_head=attention_head_dim, bias=attention_bias, out_bias=attention_out_bias, qk_norm=qk_norm, processor=LTXVideoAttentionProcessor2_0(), ) self.ff = FeedForward(dim, activation_fn=activation_fn) self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5) def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, temb: torch.Tensor, image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, encoder_attention_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: batch_size = hidden_states.size(0) norm_hidden_states = self.norm1(hidden_states) num_ada_params = self.scale_shift_table.shape[0] ada_values = self.scale_shift_table[None, None] + temb.reshape(batch_size, temb.size(1), num_ada_params, -1) shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ada_values.unbind(dim=2) norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa attn_hidden_states = self.attn1( hidden_states=norm_hidden_states, encoder_hidden_states=None, image_rotary_emb=image_rotary_emb, ) hidden_states = hidden_states + attn_hidden_states * gate_msa attn_hidden_states = self.attn2( hidden_states, encoder_hidden_states=encoder_hidden_states, image_rotary_emb=None, attention_mask=encoder_attention_mask, ) hidden_states = hidden_states + attn_hidden_states norm_hidden_states = self.norm2(hidden_states) * (1 + scale_mlp) + shift_mlp ff_output = self.ff(norm_hidden_states) hidden_states = hidden_states + ff_output * gate_mlp return hidden_states @maybe_allow_in_graph class LTXVideoTransformer3DModel(ModelMixin, ConfigMixin, FromOriginalModelMixin, PeftAdapterMixin): r""" A Transformer model for video-like data used in [LTX](https://huggingface.co/Lightricks/LTX-Video). Args: in_channels (`int`, defaults to `128`): The number of channels in the input. out_channels (`int`, defaults to `128`): The number of channels in the output. patch_size (`int`, defaults to `1`): The size of the spatial patches to use in the patch embedding layer. patch_size_t (`int`, defaults to `1`): The size of the tmeporal patches to use in the patch embedding layer. num_attention_heads (`int`, defaults to `32`): The number of heads to use for multi-head attention. attention_head_dim (`int`, defaults to `64`): The number of channels in each head. cross_attention_dim (`int`, defaults to `2048 `): The number of channels for cross attention heads. num_layers (`int`, defaults to `28`): The number of layers of Transformer blocks to use. activation_fn (`str`, defaults to `"gelu-approximate"`): Activation function to use in feed-forward. qk_norm (`str`, defaults to `"rms_norm_across_heads"`): The normalization layer to use. """ _supports_gradient_checkpointing = True @register_to_config def __init__( self, in_channels: int = 128, out_channels: int = 128, patch_size: int = 1, patch_size_t: int = 1, num_attention_heads: int = 32, attention_head_dim: int = 64, cross_attention_dim: int = 2048, num_layers: int = 28, activation_fn: str = "gelu-approximate", qk_norm: str = "rms_norm_across_heads", norm_elementwise_affine: bool = False, norm_eps: float = 1e-6, caption_channels: int = 4096, attention_bias: bool = True, attention_out_bias: bool = True, ) -> None: super().__init__() out_channels = out_channels or in_channels inner_dim = num_attention_heads * attention_head_dim self.proj_in = nn.Linear(in_channels, inner_dim) self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5) self.time_embed = AdaLayerNormSingle(inner_dim, use_additional_conditions=False) self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim) self.rope = LTXVideoRotaryPosEmbed( dim=inner_dim, base_num_frames=20, base_height=2048, base_width=2048, patch_size=patch_size, patch_size_t=patch_size_t, theta=10000.0, ) self.transformer_blocks = nn.ModuleList( [ LTXVideoTransformerBlock( dim=inner_dim, num_attention_heads=num_attention_heads, attention_head_dim=attention_head_dim, cross_attention_dim=cross_attention_dim, qk_norm=qk_norm, activation_fn=activation_fn, attention_bias=attention_bias, attention_out_bias=attention_out_bias, eps=norm_eps, elementwise_affine=norm_elementwise_affine, ) for _ in range(num_layers) ] ) self.norm_out = nn.LayerNorm(inner_dim, eps=1e-6, elementwise_affine=False) self.proj_out = nn.Linear(inner_dim, out_channels) self.gradient_checkpointing = False def _set_gradient_checkpointing(self, module, value=False): if hasattr(module, "gradient_checkpointing"): module.gradient_checkpointing = value def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, timestep: torch.LongTensor, encoder_attention_mask: torch.Tensor, num_frames: int, height: int, width: int, rope_interpolation_scale: Optional[Tuple[float, float, float]] = None, attention_kwargs: Optional[Dict[str, Any]] = None, return_dict: bool = True, ) -> torch.Tensor: if attention_kwargs is not None: attention_kwargs = attention_kwargs.copy() lora_scale = attention_kwargs.pop("scale", 1.0) else: lora_scale = 1.0 if USE_PEFT_BACKEND: # weight the lora layers by setting `lora_scale` for each PEFT layer scale_lora_layers(self, lora_scale) else: if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None: logger.warning( "Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective." ) image_rotary_emb = self.rope(hidden_states, num_frames, height, width, rope_interpolation_scale) # convert encoder_attention_mask to a bias the same way we do for attention_mask if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2: encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0 encoder_attention_mask = encoder_attention_mask.unsqueeze(1) batch_size = hidden_states.size(0) hidden_states = self.proj_in(hidden_states) temb, embedded_timestep = self.time_embed( timestep.flatten(), batch_size=batch_size, hidden_dtype=hidden_states.dtype, ) temb = temb.view(batch_size, -1, temb.size(-1)) embedded_timestep = embedded_timestep.view(batch_size, -1, embedded_timestep.size(-1)) encoder_hidden_states = self.caption_projection(encoder_hidden_states) encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.size(-1)) for block in self.transformer_blocks: if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, encoder_hidden_states, temb, image_rotary_emb, encoder_attention_mask, **ckpt_kwargs, ) else: hidden_states = block( hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb, image_rotary_emb=image_rotary_emb, encoder_attention_mask=encoder_attention_mask, ) scale_shift_values = self.scale_shift_table[None, None] + embedded_timestep[:, :, None] shift, scale = scale_shift_values[:, :, 0], scale_shift_values[:, :, 1] hidden_states = self.norm_out(hidden_states) hidden_states = hidden_states * (1 + scale) + shift output = self.proj_out(hidden_states) if USE_PEFT_BACKEND: # remove `lora_scale` from each PEFT layer unscale_lora_layers(self, lora_scale) if not return_dict: return (output,) return Transformer2DModelOutput(sample=output) def apply_rotary_emb(x, freqs): cos, sin = freqs x_real, x_imag = x.unflatten(2, (-1, 2)).unbind(-1) # [B, S, H, D // 2] x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(2) out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype) return out