# Copyright 2024 The Genmo team and The HuggingFace Team. # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, Optional, Tuple import torch import torch.nn as nn from ...configuration_utils import ConfigMixin, register_to_config from ...loaders import PeftAdapterMixin from ...loaders.single_file_model import FromOriginalModelMixin from ...utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers from ...utils.torch_utils import maybe_allow_in_graph from ..attention import FeedForward from ..attention_processor import MochiAttention, MochiAttnProcessor2_0 from ..embeddings import MochiCombinedTimestepCaptionEmbedding, PatchEmbed from ..modeling_outputs import Transformer2DModelOutput from ..modeling_utils import ModelMixin from ..normalization import AdaLayerNormContinuous, RMSNorm logger = logging.get_logger(__name__) # pylint: disable=invalid-name class MochiModulatedRMSNorm(nn.Module): def __init__(self, eps: float): super().__init__() self.eps = eps self.norm = RMSNorm(0, eps, False) def forward(self, hidden_states, scale=None): hidden_states_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) hidden_states = self.norm(hidden_states) if scale is not None: hidden_states = hidden_states * scale hidden_states = hidden_states.to(hidden_states_dtype) return hidden_states class MochiLayerNormContinuous(nn.Module): def __init__( self, embedding_dim: int, conditioning_embedding_dim: int, eps=1e-5, bias=True, ): super().__init__() # AdaLN self.silu = nn.SiLU() self.linear_1 = nn.Linear(conditioning_embedding_dim, embedding_dim, bias=bias) self.norm = MochiModulatedRMSNorm(eps=eps) def forward( self, x: torch.Tensor, conditioning_embedding: torch.Tensor, ) -> torch.Tensor: input_dtype = x.dtype # convert back to the original dtype in case `conditioning_embedding`` is upcasted to float32 (needed for hunyuanDiT) scale = self.linear_1(self.silu(conditioning_embedding).to(x.dtype)) x = self.norm(x, (1 + scale.unsqueeze(1).to(torch.float32))) return x.to(input_dtype) class MochiRMSNormZero(nn.Module): r""" Adaptive RMS Norm used in Mochi. Parameters: embedding_dim (`int`): The size of each embedding vector. """ def __init__( self, embedding_dim: int, hidden_dim: int, eps: float = 1e-5, elementwise_affine: bool = False ) -> None: super().__init__() self.silu = nn.SiLU() self.linear = nn.Linear(embedding_dim, hidden_dim) self.norm = RMSNorm(0, eps, False) def forward( self, hidden_states: torch.Tensor, emb: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: hidden_states_dtype = hidden_states.dtype emb = self.linear(self.silu(emb)) scale_msa, gate_msa, scale_mlp, gate_mlp = emb.chunk(4, dim=1) hidden_states = self.norm(hidden_states.to(torch.float32)) * (1 + scale_msa[:, None].to(torch.float32)) hidden_states = hidden_states.to(hidden_states_dtype) return hidden_states, gate_msa, scale_mlp, gate_mlp @maybe_allow_in_graph class MochiTransformerBlock(nn.Module): r""" Transformer block used in [Mochi](https://huggingface.co/genmo/mochi-1-preview). Args: dim (`int`): The number of channels in the input and output. num_attention_heads (`int`): The number of heads to use for multi-head attention. attention_head_dim (`int`): The number of channels in each head. qk_norm (`str`, defaults to `"rms_norm"`): The normalization layer to use. activation_fn (`str`, defaults to `"swiglu"`): Activation function to use in feed-forward. context_pre_only (`bool`, defaults to `False`): Whether or not to process context-related conditions with additional layers. eps (`float`, defaults to `1e-6`): Epsilon value for normalization layers. """ def __init__( self, dim: int, num_attention_heads: int, attention_head_dim: int, pooled_projection_dim: int, qk_norm: str = "rms_norm", activation_fn: str = "swiglu", context_pre_only: bool = False, eps: float = 1e-6, ) -> None: super().__init__() self.context_pre_only = context_pre_only self.ff_inner_dim = (4 * dim * 2) // 3 self.ff_context_inner_dim = (4 * pooled_projection_dim * 2) // 3 self.norm1 = MochiRMSNormZero(dim, 4 * dim, eps=eps, elementwise_affine=False) if not context_pre_only: self.norm1_context = MochiRMSNormZero(dim, 4 * pooled_projection_dim, eps=eps, elementwise_affine=False) else: self.norm1_context = MochiLayerNormContinuous( embedding_dim=pooled_projection_dim, conditioning_embedding_dim=dim, eps=eps, ) self.attn1 = MochiAttention( query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, bias=False, added_kv_proj_dim=pooled_projection_dim, added_proj_bias=False, out_dim=dim, out_context_dim=pooled_projection_dim, context_pre_only=context_pre_only, processor=MochiAttnProcessor2_0(), eps=1e-5, ) # TODO(aryan): norm_context layers are not needed when `context_pre_only` is True self.norm2 = MochiModulatedRMSNorm(eps=eps) self.norm2_context = MochiModulatedRMSNorm(eps=eps) if not self.context_pre_only else None self.norm3 = MochiModulatedRMSNorm(eps) self.norm3_context = MochiModulatedRMSNorm(eps=eps) if not self.context_pre_only else None self.ff = FeedForward(dim, inner_dim=self.ff_inner_dim, activation_fn=activation_fn, bias=False) self.ff_context = None if not context_pre_only: self.ff_context = FeedForward( pooled_projection_dim, inner_dim=self.ff_context_inner_dim, activation_fn=activation_fn, bias=False, ) self.norm4 = MochiModulatedRMSNorm(eps=eps) self.norm4_context = MochiModulatedRMSNorm(eps=eps) def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, temb: torch.Tensor, encoder_attention_mask: torch.Tensor, image_rotary_emb: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: norm_hidden_states, gate_msa, scale_mlp, gate_mlp = self.norm1(hidden_states, temb) if not self.context_pre_only: norm_encoder_hidden_states, enc_gate_msa, enc_scale_mlp, enc_gate_mlp = self.norm1_context( encoder_hidden_states, temb ) else: norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states, temb) attn_hidden_states, context_attn_hidden_states = self.attn1( hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states, image_rotary_emb=image_rotary_emb, attention_mask=encoder_attention_mask, ) hidden_states = hidden_states + self.norm2(attn_hidden_states, torch.tanh(gate_msa).unsqueeze(1)) norm_hidden_states = self.norm3(hidden_states, (1 + scale_mlp.unsqueeze(1).to(torch.float32))) ff_output = self.ff(norm_hidden_states) hidden_states = hidden_states + self.norm4(ff_output, torch.tanh(gate_mlp).unsqueeze(1)) if not self.context_pre_only: encoder_hidden_states = encoder_hidden_states + self.norm2_context( context_attn_hidden_states, torch.tanh(enc_gate_msa).unsqueeze(1) ) norm_encoder_hidden_states = self.norm3_context( encoder_hidden_states, (1 + enc_scale_mlp.unsqueeze(1).to(torch.float32)) ) context_ff_output = self.ff_context(norm_encoder_hidden_states) encoder_hidden_states = encoder_hidden_states + self.norm4_context( context_ff_output, torch.tanh(enc_gate_mlp).unsqueeze(1) ) return hidden_states, encoder_hidden_states class MochiRoPE(nn.Module): r""" RoPE implementation used in [Mochi](https://huggingface.co/genmo/mochi-1-preview). Args: base_height (`int`, defaults to `192`): Base height used to compute interpolation scale for rotary positional embeddings. base_width (`int`, defaults to `192`): Base width used to compute interpolation scale for rotary positional embeddings. """ def __init__(self, base_height: int = 192, base_width: int = 192) -> None: super().__init__() self.target_area = base_height * base_width def _centers(self, start, stop, num, device, dtype) -> torch.Tensor: edges = torch.linspace(start, stop, num + 1, device=device, dtype=dtype) return (edges[:-1] + edges[1:]) / 2 def _get_positions( self, num_frames: int, height: int, width: int, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, ) -> torch.Tensor: scale = (self.target_area / (height * width)) ** 0.5 t = torch.arange(num_frames, device=device, dtype=dtype) h = self._centers(-height * scale / 2, height * scale / 2, height, device, dtype) w = self._centers(-width * scale / 2, width * scale / 2, width, device, dtype) grid_t, grid_h, grid_w = torch.meshgrid(t, h, w, indexing="ij") positions = torch.stack([grid_t, grid_h, grid_w], dim=-1).view(-1, 3) return positions def _create_rope(self, freqs: torch.Tensor, pos: torch.Tensor) -> torch.Tensor: with torch.autocast(freqs.device.type, torch.float32): # Always run ROPE freqs computation in FP32 freqs = torch.einsum("nd,dhf->nhf", pos.to(torch.float32), freqs.to(torch.float32)) freqs_cos = torch.cos(freqs) freqs_sin = torch.sin(freqs) return freqs_cos, freqs_sin def forward( self, pos_frequencies: torch.Tensor, num_frames: int, height: int, width: int, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: pos = self._get_positions(num_frames, height, width, device, dtype) rope_cos, rope_sin = self._create_rope(pos_frequencies, pos) return rope_cos, rope_sin @maybe_allow_in_graph class MochiTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin): r""" A Transformer model for video-like data introduced in [Mochi](https://huggingface.co/genmo/mochi-1-preview). Args: patch_size (`int`, defaults to `2`): The size of the patches to use in the patch embedding layer. num_attention_heads (`int`, defaults to `24`): The number of heads to use for multi-head attention. attention_head_dim (`int`, defaults to `128`): The number of channels in each head. num_layers (`int`, defaults to `48`): The number of layers of Transformer blocks to use. in_channels (`int`, defaults to `12`): The number of channels in the input. out_channels (`int`, *optional*, defaults to `None`): The number of channels in the output. qk_norm (`str`, defaults to `"rms_norm"`): The normalization layer to use. text_embed_dim (`int`, defaults to `4096`): Input dimension of text embeddings from the text encoder. time_embed_dim (`int`, defaults to `256`): Output dimension of timestep embeddings. activation_fn (`str`, defaults to `"swiglu"`): Activation function to use in feed-forward. max_sequence_length (`int`, defaults to `256`): The maximum sequence length of text embeddings supported. """ _supports_gradient_checkpointing = True _no_split_modules = ["MochiTransformerBlock"] @register_to_config def __init__( self, patch_size: int = 2, num_attention_heads: int = 24, attention_head_dim: int = 128, num_layers: int = 48, pooled_projection_dim: int = 1536, in_channels: int = 12, out_channels: Optional[int] = None, qk_norm: str = "rms_norm", text_embed_dim: int = 4096, time_embed_dim: int = 256, activation_fn: str = "swiglu", max_sequence_length: int = 256, ) -> None: super().__init__() inner_dim = num_attention_heads * attention_head_dim out_channels = out_channels or in_channels self.patch_embed = PatchEmbed( patch_size=patch_size, in_channels=in_channels, embed_dim=inner_dim, pos_embed_type=None, ) self.time_embed = MochiCombinedTimestepCaptionEmbedding( embedding_dim=inner_dim, pooled_projection_dim=pooled_projection_dim, text_embed_dim=text_embed_dim, time_embed_dim=time_embed_dim, num_attention_heads=8, ) self.pos_frequencies = nn.Parameter(torch.full((3, num_attention_heads, attention_head_dim // 2), 0.0)) self.rope = MochiRoPE() self.transformer_blocks = nn.ModuleList( [ MochiTransformerBlock( dim=inner_dim, num_attention_heads=num_attention_heads, attention_head_dim=attention_head_dim, pooled_projection_dim=pooled_projection_dim, qk_norm=qk_norm, activation_fn=activation_fn, context_pre_only=i == num_layers - 1, ) for i in range(num_layers) ] ) self.norm_out = AdaLayerNormContinuous( inner_dim, inner_dim, elementwise_affine=False, eps=1e-6, norm_type="layer_norm", ) self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * out_channels) self.gradient_checkpointing = False def _set_gradient_checkpointing(self, module, value=False): if hasattr(module, "gradient_checkpointing"): module.gradient_checkpointing = value def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, timestep: torch.LongTensor, encoder_attention_mask: torch.Tensor, attention_kwargs: Optional[Dict[str, Any]] = None, return_dict: bool = True, ) -> torch.Tensor: if attention_kwargs is not None: attention_kwargs = attention_kwargs.copy() lora_scale = attention_kwargs.pop("scale", 1.0) else: lora_scale = 1.0 if USE_PEFT_BACKEND: # weight the lora layers by setting `lora_scale` for each PEFT layer scale_lora_layers(self, lora_scale) else: if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None: logger.warning( "Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective." ) batch_size, num_channels, num_frames, height, width = hidden_states.shape p = self.config.patch_size post_patch_height = height // p post_patch_width = width // p temb, encoder_hidden_states = self.time_embed( timestep, encoder_hidden_states, encoder_attention_mask, hidden_dtype=hidden_states.dtype, ) hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1) hidden_states = self.patch_embed(hidden_states) hidden_states = hidden_states.unflatten(0, (batch_size, -1)).flatten(1, 2) image_rotary_emb = self.rope( self.pos_frequencies, num_frames, post_patch_height, post_patch_width, device=hidden_states.device, dtype=torch.float32, ) for i, block in enumerate(self.transformer_blocks): if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, encoder_hidden_states, temb, encoder_attention_mask, image_rotary_emb, **ckpt_kwargs, ) else: hidden_states, encoder_hidden_states = block( hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb, encoder_attention_mask=encoder_attention_mask, image_rotary_emb=image_rotary_emb, ) hidden_states = self.norm_out(hidden_states, temb) hidden_states = self.proj_out(hidden_states) hidden_states = hidden_states.reshape(batch_size, num_frames, post_patch_height, post_patch_width, p, p, -1) hidden_states = hidden_states.permute(0, 6, 1, 2, 4, 3, 5) output = hidden_states.reshape(batch_size, -1, num_frames, height, width) if USE_PEFT_BACKEND: # remove `lora_scale` from each PEFT layer unscale_lora_layers(self, lora_scale) if not return_dict: return (output,) return Transformer2DModelOutput(sample=output)