# Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect from contextlib import contextmanager from copy import deepcopy from functools import update_wrapper from types import MethodType from .peft_model import PeftConfig, PeftModel from .tuners.lora.layer import LoraLayer def update_forward_signature(model: PeftModel) -> None: """ Updates the forward signature of the PeftModel to include parents class signature model (`PeftModel`): Peft model to update the forward signature Example: ```python >>> from transformers import WhisperForConditionalGeneration >>> from peft import get_peft_model, LoraConfig, update_forward_signature >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en") >>> peft_config = LoraConfig(r=8, lora_alpha=32, lora_dropout=0.1, target_modules=["q_proj", "v_proj"]) >>> peft_model = get_peft_model(model, peft_config) >>> update_forward_signature(peft_model) ``` """ # Only update signature when the current forward signature only has *args and **kwargs current_signature = inspect.signature(model.forward) if ( len(current_signature.parameters) == 2 and "args" in current_signature.parameters and "kwargs" in current_signature.parameters ): forward = deepcopy(model.forward.__func__) update_wrapper( forward, type(model.get_base_model()).forward, assigned=("__doc__", "__name__", "__annotations__") ) model.forward = MethodType(forward, model) def update_generate_signature(model: PeftModel) -> None: """ Updates the generate signature of a PeftModel with overriding generate to include parents class signature model (`PeftModel`): Peft model to update the generate signature Example: ```python >>> from transformers import AutoModelForSeq2SeqLM, AutoTokenizer >>> from peft import get_peft_model, LoraConfig, TaskType, update_generate_signature >>> model_name_or_path = "bigscience/mt0-large" >>> tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) >>> model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path) >>> peft_config = LoraConfig( ... task_type=TaskType.SEQ_2_SEQ_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1 ... ) >>> peft_model = get_peft_model(model, peft_config) >>> update_generate_signature(peft_model) >>> help(peft_model.generate) ``` """ if not hasattr(model, "generate"): return current_signature = inspect.signature(model.generate) if ( len(current_signature.parameters) == 2 and "args" in current_signature.parameters and "kwargs" in current_signature.parameters ) or (len(current_signature.parameters) == 1 and "kwargs" in current_signature.parameters): generate = deepcopy(model.generate.__func__) update_wrapper( generate, type(model.get_base_model()).generate, assigned=("__doc__", "__name__", "__annotations__"), ) model.generate = MethodType(generate, model) def update_signature(model: PeftModel, method: str = "all") -> None: """ Updates the signature of a PeftModel include parents class signature for forward or generate method model (`PeftModel`): Peft model to update generate or forward signature method (`str`): method to update signature choose one of "forward", "generate", "all" Example: ```python >>> from transformers import AutoModelForSeq2SeqLM, AutoTokenizer >>> from peft import get_peft_model, LoraConfig, TaskType, update_signature >>> model_name_or_path = "bigscience/mt0-large" >>> tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) >>> model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path) >>> peft_config = LoraConfig( ... task_type=TaskType.SEQ_2_SEQ_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1 ... ) >>> peft_model = get_peft_model(model, peft_config) >>> update_signature(peft_model) >>> help(peft_model.generate) ``` """ if method == "forward": update_forward_signature(model) elif method == "generate": update_generate_signature(model) elif method == "all": update_forward_signature(model) update_generate_signature(model) else: raise ValueError(f"method {method} is not supported please choose one of ['forward', 'generate', 'all']") def check_if_peft_model(model_name_or_path: str) -> bool: """ Check if the model is a PEFT model. Args: model_name_or_path (`str`): Model id to check, can be local or on the Hugging Face Hub. Returns: `bool`: True if the model is a PEFT model, False otherwise. """ is_peft_model = True try: PeftConfig.from_pretrained(model_name_or_path) except Exception: # allow broad exceptions so that this works even if new exceptions are added on HF Hub side is_peft_model = False return is_peft_model @contextmanager def rescale_adapter_scale(model, multiplier): """ Context manager to temporarily rescale the scaling of the LoRA adapter in a model. The original scaling values are restored when the context manager exits. This context manager works with the transformers and diffusers models that have directly loaded LoRA adapters. For LoRA, applying this context manager with multiplier in [0, 1] is strictly equivalent to applying [wise-ft](https://arxiv.org/abs/2109.01903) (see [#1940](https://github.com/huggingface/peft/issues/1940) for details). It can improve the performances of the model if there is a distribution shiftbetween the training data used for fine-tuning, and the test data used during inference. Warning: It has been reported that when using Apple's MPS backend for PyTorch, it is necessary to add a short sleep time after exiting the context before the scales are fully restored. Args: model: The model containing `LoraLayer` modules whose scaling is to be adjusted. multiplier (float or int): The multiplier that rescales the `scaling` attribute. Must be of type float or int. Raises: ValueError: If the model does not contain any `LoraLayer` instances, indicating that the model does not support scaling. Example: ```python >>> model = ModelWithLoraLayer() >>> multiplier = 0.5 >>> with rescale_adapter_scale(model, multiplier): ... outputs = model(**inputs) # Perform operations with the scaled model >>> outputs = model(**inputs) # The original scaling values are restored here ``` """ # check if multiplier has a valid data type if not isinstance(multiplier, (float, int)): raise TypeError(f"Argument multiplier should be of type float, got {type(multiplier)}") # iterate on the model's modules and grab the original scaling attribute # from the lora layers if present original_scaling = {} for module in model.modules(): if isinstance(module, LoraLayer): original_scaling[module] = module.scaling.copy() module.scaling = {k: v * multiplier for k, v in module.scaling.items()} # check whether scaling is prohibited on model # the original scaling dictionary should be empty # if there were no lora layers if not original_scaling: raise ValueError("scaling is only supported for models with `LoraLayer`s") try: yield finally: # restore original scaling values after exiting the context for module, scaling in original_scaling.items(): module.scaling = scaling