# Copyright 2024-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Tuple import torch class IncrementalPCA: """ An implementation of Incremental Principal Components Analysis (IPCA) that leverages PyTorch for GPU acceleration. Adapted from https://github.com/scikit-learn/scikit-learn/blob/main/sklearn/decomposition/_incremental_pca.py This class provides methods to fit the model on data incrementally in batches, and to transform new data based on the principal components learned during the fitting process. Args: n_components (int, optional): Number of components to keep. If `None`, it's set to the minimum of the number of samples and features. Defaults to None. copy (bool): If False, input data will be overwritten. Defaults to True. batch_size (int, optional): The number of samples to use for each batch. Only needed if self.fit is called. If `None`, it's inferred from the data and set to `5 * n_features`. Defaults to None. svd_driver (str, optional): name of the cuSOLVER method to be used for torch.linalg.svd. This keyword argument only works on CUDA inputs. Available options are: None, gesvd, gesvdj, and gesvda. Defaults to None. lowrank (bool, optional): Whether to use torch.svd_lowrank instead of torch.linalg.svd which can be faster. Defaults to False. lowrank_q (int, optional): For an adequate approximation of n_components, this parameter defaults to n_components * 2. lowrank_niter (int, optional): Number of subspace iterations to conduct for torch.svd_lowrank. Defaults to 4. lowrank_seed (int, optional): Seed for making results of torch.svd_lowrank reproducible. """ def __init__( self, n_components: Optional[int] = None, copy: Optional[bool] = True, batch_size: Optional[int] = None, svd_driver: Optional[str] = None, lowrank: bool = False, lowrank_q: Optional[int] = None, lowrank_niter: int = 4, lowrank_seed: Optional[int] = None, ): self.n_components = n_components self.copy = copy self.batch_size = batch_size self.svd_driver = svd_driver self.lowrank = lowrank self.lowrank_q = lowrank_q self.lowrank_niter = lowrank_niter self.lowrank_seed = lowrank_seed self.n_features_ = None if self.lowrank: self._validate_lowrank_params() def _validate_lowrank_params(self): if self.lowrank_q is None: if self.n_components is None: raise ValueError("n_components must be specified when using lowrank mode with lowrank_q=None.") self.lowrank_q = self.n_components * 2 elif self.lowrank_q < self.n_components: raise ValueError("lowrank_q must be greater than or equal to n_components.") def _svd_fn_full(self, X): return torch.linalg.svd(X, full_matrices=False, driver=self.svd_driver) def _svd_fn_lowrank(self, X): seed_enabled = self.lowrank_seed is not None with torch.random.fork_rng(enabled=seed_enabled): if seed_enabled: torch.manual_seed(self.lowrank_seed) U, S, V = torch.svd_lowrank(X, q=self.lowrank_q, niter=self.lowrank_niter) return U, S, V.mH def _validate_data(self, X) -> torch.Tensor: """ Validates and converts the input data `X` to the appropriate tensor format. Args: X (torch.Tensor): Input data. Returns: torch.Tensor: Converted to appropriate format. """ valid_dtypes = [torch.float32, torch.float64] if not isinstance(X, torch.Tensor): X = torch.tensor(X, dtype=torch.float32) elif self.copy: X = X.clone() n_samples, n_features = X.shape if self.n_components is None: pass elif self.n_components > n_features: raise ValueError( f"n_components={self.n_components} invalid for n_features={n_features}, " "need more rows than columns for IncrementalPCA processing." ) elif self.n_components > n_samples: raise ValueError( f"n_components={self.n_components} must be less or equal to the batch number of samples {n_samples}" ) if X.dtype not in valid_dtypes: X = X.to(torch.float32) return X @staticmethod def _incremental_mean_and_var( X, last_mean, last_variance, last_sample_count ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Computes the incremental mean and variance for the data `X`. Args: X (torch.Tensor): The batch input data tensor with shape (n_samples, n_features). last_mean (torch.Tensor): The previous mean tensor with shape (n_features,). last_variance (torch.Tensor): The previous variance tensor with shape (n_features,). last_sample_count (torch.Tensor): The count tensor of samples processed before the current batch. Returns: Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: Updated mean, variance tensors, and total sample count. """ if X.shape[0] == 0: return last_mean, last_variance, last_sample_count if last_sample_count > 0: if last_mean is None: raise ValueError("last_mean should not be None if last_sample_count > 0.") if last_variance is None: raise ValueError("last_variance should not be None if last_sample_count > 0.") new_sample_count = torch.tensor([X.shape[0]], device=X.device) updated_sample_count = last_sample_count + new_sample_count if last_mean is None: last_sum = torch.zeros(X.shape[1], dtype=torch.float64, device=X.device) else: last_sum = last_mean * last_sample_count new_sum = X.sum(dim=0, dtype=torch.float64) updated_mean = (last_sum + new_sum) / updated_sample_count T = new_sum / new_sample_count temp = X - T correction = temp.sum(dim=0, dtype=torch.float64).square() temp.square_() new_unnormalized_variance = temp.sum(dim=0, dtype=torch.float64) new_unnormalized_variance -= correction / new_sample_count if last_variance is None: updated_variance = new_unnormalized_variance / updated_sample_count else: last_unnormalized_variance = last_variance * last_sample_count last_over_new_count = last_sample_count.double() / new_sample_count updated_unnormalized_variance = ( last_unnormalized_variance + new_unnormalized_variance + last_over_new_count / updated_sample_count * (last_sum / last_over_new_count - new_sum).square() ) updated_variance = updated_unnormalized_variance / updated_sample_count return updated_mean, updated_variance, updated_sample_count @staticmethod def _svd_flip(u, v, u_based_decision=True) -> Tuple[torch.Tensor, torch.Tensor]: """ Adjusts the signs of the singular vectors from the SVD decomposition for deterministic output. This method ensures that the output remains consistent across different runs. Args: u (torch.Tensor): Left singular vectors tensor. v (torch.Tensor): Right singular vectors tensor. u_based_decision (bool, optional): If True, uses the left singular vectors to determine the sign flipping. Defaults to True. Returns: Tuple[torch.Tensor, torch.Tensor]: Adjusted left and right singular vectors tensors. """ if u_based_decision: max_abs_cols = torch.argmax(torch.abs(u), dim=0) signs = torch.sign(u[max_abs_cols, range(u.shape[1])]) else: max_abs_rows = torch.argmax(torch.abs(v), dim=1) signs = torch.sign(v[range(v.shape[0]), max_abs_rows]) u *= signs[: u.shape[1]].view(1, -1) v *= signs.view(-1, 1) return u, v def fit(self, X, check_input=True): """ Fits the model with data `X` using minibatches of size `batch_size`. Args: X (torch.Tensor): The input data tensor with shape (n_samples, n_features). check_input (bool, optional): If True, validates the input. Defaults to True. Returns: IncrementalPCA: The fitted IPCA model. """ if check_input: X = self._validate_data(X) n_samples, n_features = X.shape if self.batch_size is None: self.batch_size = 5 * n_features for batch in self.gen_batches(n_samples, self.batch_size, min_batch_size=self.n_components or 0): self.partial_fit(X[batch], check_input=False) return self def partial_fit(self, X, check_input=True): """ Incrementally fits the model with batch data `X`. Args: X (torch.Tensor): The batch input data tensor with shape (n_samples, n_features). check_input (bool, optional): If True, validates the input. Defaults to True. Returns: IncrementalPCA: The updated IPCA model after processing the batch. """ first_pass = not hasattr(self, "components_") if check_input: X = self._validate_data(X) n_samples, n_features = X.shape # Initialize attributes to avoid errors during the first call to partial_fit if first_pass: self.mean_ = None # Will be initialized properly in _incremental_mean_and_var based on data dimensions self.var_ = None # Will be initialized properly in _incremental_mean_and_var based on data dimensions self.n_samples_seen_ = torch.tensor([0], device=X.device) self.n_features_ = n_features if not self.n_components: self.n_components = min(n_samples, n_features) if n_features != self.n_features_: raise ValueError( "Number of features of the new batch does not match the number of features of the first batch." ) col_mean, col_var, n_total_samples = self._incremental_mean_and_var( X, self.mean_, self.var_, self.n_samples_seen_ ) if first_pass: X -= col_mean else: col_batch_mean = torch.mean(X, dim=0) X -= col_batch_mean mean_correction_factor = torch.sqrt((self.n_samples_seen_.double() / n_total_samples) * n_samples) mean_correction = mean_correction_factor * (self.mean_ - col_batch_mean) X = torch.vstack( ( self.singular_values_.view((-1, 1)) * self.components_, X, mean_correction, ) ) if self.lowrank: U, S, Vt = self._svd_fn_lowrank(X) else: U, S, Vt = self._svd_fn_full(X) U, Vt = self._svd_flip(U, Vt, u_based_decision=False) explained_variance = S**2 / (n_total_samples - 1) explained_variance_ratio = S**2 / torch.sum(col_var * n_total_samples) self.n_samples_seen_ = n_total_samples self.components_ = Vt[: self.n_components] self.singular_values_ = S[: self.n_components] self.mean_ = col_mean self.var_ = col_var self.explained_variance_ = explained_variance[: self.n_components] self.explained_variance_ratio_ = explained_variance_ratio[: self.n_components] if self.n_components not in (n_samples, n_features): self.noise_variance_ = explained_variance[self.n_components :].mean() else: self.noise_variance_ = torch.tensor(0.0, device=X.device) return self def transform(self, X) -> torch.Tensor: """ Applies dimensionality reduction to `X`. The input data `X` is projected on the first principal components previously extracted from a training set. Args: X (torch.Tensor): New data tensor with shape (n_samples, n_features) to be transformed. Returns: torch.Tensor: Transformed data tensor with shape (n_samples, n_components). """ X = X - self.mean_ return torch.mm(X.double(), self.components_.T).to(X.dtype) @staticmethod def gen_batches(n: int, batch_size: int, min_batch_size: int = 0): """Generator to create slices containing `batch_size` elements from 0 to `n`. The last slice may contain less than `batch_size` elements, when `batch_size` does not divide `n`. Args: n (int): Size of the sequence. batch_size (int): Number of elements in each batch. min_batch_size (int, optional): Minimum number of elements in each batch. Defaults to 0. Yields: slice: A slice of `batch_size` elements. """ start = 0 for _ in range(int(n // batch_size)): end = start + batch_size if end + min_batch_size > n: continue yield slice(start, end) start = end if start < n: yield slice(start, n)