# Copyright 2024 The Hunyuan Team and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, Optional, Tuple, Union import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint from ...configuration_utils import ConfigMixin, register_to_config from ...utils import is_torch_version, logging from ...utils.accelerate_utils import apply_forward_hook from ..activations import get_activation from ..attention_processor import Attention from ..modeling_outputs import AutoencoderKLOutput from ..modeling_utils import ModelMixin from .vae import DecoderOutput, DiagonalGaussianDistribution logger = logging.get_logger(__name__) # pylint: disable=invalid-name def prepare_causal_attention_mask( num_frames: int, height_width: int, dtype: torch.dtype, device: torch.device, batch_size: int = None ) -> torch.Tensor: seq_len = num_frames * height_width mask = torch.full((seq_len, seq_len), float("-inf"), dtype=dtype, device=device) for i in range(seq_len): i_frame = i // height_width mask[i, : (i_frame + 1) * height_width] = 0 if batch_size is not None: mask = mask.unsqueeze(0).expand(batch_size, -1, -1) return mask class HunyuanVideoCausalConv3d(nn.Module): def __init__( self, in_channels: int, out_channels: int, kernel_size: Union[int, Tuple[int, int, int]] = 3, stride: Union[int, Tuple[int, int, int]] = 1, padding: Union[int, Tuple[int, int, int]] = 0, dilation: Union[int, Tuple[int, int, int]] = 1, bias: bool = True, pad_mode: str = "replicate", ) -> None: super().__init__() kernel_size = (kernel_size, kernel_size, kernel_size) if isinstance(kernel_size, int) else kernel_size self.pad_mode = pad_mode self.time_causal_padding = ( kernel_size[0] // 2, kernel_size[0] // 2, kernel_size[1] // 2, kernel_size[1] // 2, kernel_size[2] - 1, 0, ) self.conv = nn.Conv3d(in_channels, out_channels, kernel_size, stride, padding, dilation, bias=bias) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = F.pad(hidden_states, self.time_causal_padding, mode=self.pad_mode) return self.conv(hidden_states) class HunyuanVideoUpsampleCausal3D(nn.Module): def __init__( self, in_channels: int, out_channels: Optional[int] = None, kernel_size: int = 3, stride: int = 1, bias: bool = True, upsample_factor: Tuple[float, float, float] = (2, 2, 2), ) -> None: super().__init__() out_channels = out_channels or in_channels self.upsample_factor = upsample_factor self.conv = HunyuanVideoCausalConv3d(in_channels, out_channels, kernel_size, stride, bias=bias) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: num_frames = hidden_states.size(2) first_frame, other_frames = hidden_states.split((1, num_frames - 1), dim=2) first_frame = F.interpolate( first_frame.squeeze(2), scale_factor=self.upsample_factor[1:], mode="nearest" ).unsqueeze(2) if num_frames > 1: # See: https://github.com/pytorch/pytorch/issues/81665 # Unless you have a version of pytorch where non-contiguous implementation of F.interpolate # is fixed, this will raise either a runtime error, or fail silently with bad outputs. # If you are encountering an error here, make sure to try running encoding/decoding with # `vae.enable_tiling()` first. If that doesn't work, open an issue at: # https://github.com/huggingface/diffusers/issues other_frames = other_frames.contiguous() other_frames = F.interpolate(other_frames, scale_factor=self.upsample_factor, mode="nearest") hidden_states = torch.cat((first_frame, other_frames), dim=2) else: hidden_states = first_frame hidden_states = self.conv(hidden_states) return hidden_states class HunyuanVideoDownsampleCausal3D(nn.Module): def __init__( self, channels: int, out_channels: Optional[int] = None, padding: int = 1, kernel_size: int = 3, bias: bool = True, stride=2, ) -> None: super().__init__() out_channels = out_channels or channels self.conv = HunyuanVideoCausalConv3d(channels, out_channels, kernel_size, stride, padding, bias=bias) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.conv(hidden_states) return hidden_states class HunyuanVideoResnetBlockCausal3D(nn.Module): def __init__( self, in_channels: int, out_channels: Optional[int] = None, dropout: float = 0.0, groups: int = 32, eps: float = 1e-6, non_linearity: str = "swish", ) -> None: super().__init__() out_channels = out_channels or in_channels self.nonlinearity = get_activation(non_linearity) self.norm1 = nn.GroupNorm(groups, in_channels, eps=eps, affine=True) self.conv1 = HunyuanVideoCausalConv3d(in_channels, out_channels, 3, 1, 0) self.norm2 = nn.GroupNorm(groups, out_channels, eps=eps, affine=True) self.dropout = nn.Dropout(dropout) self.conv2 = HunyuanVideoCausalConv3d(out_channels, out_channels, 3, 1, 0) self.conv_shortcut = None if in_channels != out_channels: self.conv_shortcut = HunyuanVideoCausalConv3d(in_channels, out_channels, 1, 1, 0) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = hidden_states.contiguous() residual = hidden_states hidden_states = self.norm1(hidden_states) hidden_states = self.nonlinearity(hidden_states) hidden_states = self.conv1(hidden_states) hidden_states = self.norm2(hidden_states) hidden_states = self.nonlinearity(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.conv2(hidden_states) if self.conv_shortcut is not None: residual = self.conv_shortcut(residual) hidden_states = hidden_states + residual return hidden_states class HunyuanVideoMidBlock3D(nn.Module): def __init__( self, in_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_act_fn: str = "swish", resnet_groups: int = 32, add_attention: bool = True, attention_head_dim: int = 1, ) -> None: super().__init__() resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) self.add_attention = add_attention # There is always at least one resnet resnets = [ HunyuanVideoResnetBlockCausal3D( in_channels=in_channels, out_channels=in_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, non_linearity=resnet_act_fn, ) ] attentions = [] for _ in range(num_layers): if self.add_attention: attentions.append( Attention( in_channels, heads=in_channels // attention_head_dim, dim_head=attention_head_dim, eps=resnet_eps, norm_num_groups=resnet_groups, residual_connection=True, bias=True, upcast_softmax=True, _from_deprecated_attn_block=True, ) ) else: attentions.append(None) resnets.append( HunyuanVideoResnetBlockCausal3D( in_channels=in_channels, out_channels=in_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, non_linearity=resnet_act_fn, ) ) self.attentions = nn.ModuleList(attentions) self.resnets = nn.ModuleList(resnets) self.gradient_checkpointing = False def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(self.resnets[0]), hidden_states, **ckpt_kwargs ) for attn, resnet in zip(self.attentions, self.resnets[1:]): if attn is not None: batch_size, num_channels, num_frames, height, width = hidden_states.shape hidden_states = hidden_states.permute(0, 2, 3, 4, 1).flatten(1, 3) attention_mask = prepare_causal_attention_mask( num_frames, height * width, hidden_states.dtype, hidden_states.device, batch_size=batch_size ) hidden_states = attn(hidden_states, attention_mask=attention_mask) hidden_states = hidden_states.unflatten(1, (num_frames, height, width)).permute(0, 4, 1, 2, 3) hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(resnet), hidden_states, **ckpt_kwargs ) else: hidden_states = self.resnets[0](hidden_states) for attn, resnet in zip(self.attentions, self.resnets[1:]): if attn is not None: batch_size, num_channels, num_frames, height, width = hidden_states.shape hidden_states = hidden_states.permute(0, 2, 3, 4, 1).flatten(1, 3) attention_mask = prepare_causal_attention_mask( num_frames, height * width, hidden_states.dtype, hidden_states.device, batch_size=batch_size ) hidden_states = attn(hidden_states, attention_mask=attention_mask) hidden_states = hidden_states.unflatten(1, (num_frames, height, width)).permute(0, 4, 1, 2, 3) hidden_states = resnet(hidden_states) return hidden_states class HunyuanVideoDownBlock3D(nn.Module): def __init__( self, in_channels: int, out_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_act_fn: str = "swish", resnet_groups: int = 32, add_downsample: bool = True, downsample_stride: int = 2, downsample_padding: int = 1, ) -> None: super().__init__() resnets = [] for i in range(num_layers): in_channels = in_channels if i == 0 else out_channels resnets.append( HunyuanVideoResnetBlockCausal3D( in_channels=in_channels, out_channels=out_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, non_linearity=resnet_act_fn, ) ) self.resnets = nn.ModuleList(resnets) if add_downsample: self.downsamplers = nn.ModuleList( [ HunyuanVideoDownsampleCausal3D( out_channels, out_channels=out_channels, padding=downsample_padding, stride=downsample_stride, ) ] ) else: self.downsamplers = None self.gradient_checkpointing = False def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} for resnet in self.resnets: hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(resnet), hidden_states, **ckpt_kwargs ) else: for resnet in self.resnets: hidden_states = resnet(hidden_states) if self.downsamplers is not None: for downsampler in self.downsamplers: hidden_states = downsampler(hidden_states) return hidden_states class HunyuanVideoUpBlock3D(nn.Module): def __init__( self, in_channels: int, out_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_act_fn: str = "swish", resnet_groups: int = 32, add_upsample: bool = True, upsample_scale_factor: Tuple[int, int, int] = (2, 2, 2), ) -> None: super().__init__() resnets = [] for i in range(num_layers): input_channels = in_channels if i == 0 else out_channels resnets.append( HunyuanVideoResnetBlockCausal3D( in_channels=input_channels, out_channels=out_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, non_linearity=resnet_act_fn, ) ) self.resnets = nn.ModuleList(resnets) if add_upsample: self.upsamplers = nn.ModuleList( [ HunyuanVideoUpsampleCausal3D( out_channels, out_channels=out_channels, upsample_factor=upsample_scale_factor, ) ] ) else: self.upsamplers = None self.gradient_checkpointing = False def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} for resnet in self.resnets: hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(resnet), hidden_states, **ckpt_kwargs ) else: for resnet in self.resnets: hidden_states = resnet(hidden_states) if self.upsamplers is not None: for upsampler in self.upsamplers: hidden_states = upsampler(hidden_states) return hidden_states class HunyuanVideoEncoder3D(nn.Module): r""" Causal encoder for 3D video-like data introduced in [Hunyuan Video](https://huggingface.co/papers/2412.03603). """ def __init__( self, in_channels: int = 3, out_channels: int = 3, down_block_types: Tuple[str, ...] = ( "HunyuanVideoDownBlock3D", "HunyuanVideoDownBlock3D", "HunyuanVideoDownBlock3D", "HunyuanVideoDownBlock3D", ), block_out_channels: Tuple[int, ...] = (128, 256, 512, 512), layers_per_block: int = 2, norm_num_groups: int = 32, act_fn: str = "silu", double_z: bool = True, mid_block_add_attention=True, temporal_compression_ratio: int = 4, spatial_compression_ratio: int = 8, ) -> None: super().__init__() self.conv_in = HunyuanVideoCausalConv3d(in_channels, block_out_channels[0], kernel_size=3, stride=1) self.mid_block = None self.down_blocks = nn.ModuleList([]) output_channel = block_out_channels[0] for i, down_block_type in enumerate(down_block_types): if down_block_type != "HunyuanVideoDownBlock3D": raise ValueError(f"Unsupported down_block_type: {down_block_type}") input_channel = output_channel output_channel = block_out_channels[i] is_final_block = i == len(block_out_channels) - 1 num_spatial_downsample_layers = int(np.log2(spatial_compression_ratio)) num_time_downsample_layers = int(np.log2(temporal_compression_ratio)) if temporal_compression_ratio == 4: add_spatial_downsample = bool(i < num_spatial_downsample_layers) add_time_downsample = bool( i >= (len(block_out_channels) - 1 - num_time_downsample_layers) and not is_final_block ) elif temporal_compression_ratio == 8: add_spatial_downsample = bool(i < num_spatial_downsample_layers) add_time_downsample = bool(i < num_time_downsample_layers) else: raise ValueError(f"Unsupported time_compression_ratio: {temporal_compression_ratio}") downsample_stride_HW = (2, 2) if add_spatial_downsample else (1, 1) downsample_stride_T = (2,) if add_time_downsample else (1,) downsample_stride = tuple(downsample_stride_T + downsample_stride_HW) down_block = HunyuanVideoDownBlock3D( num_layers=layers_per_block, in_channels=input_channel, out_channels=output_channel, add_downsample=bool(add_spatial_downsample or add_time_downsample), resnet_eps=1e-6, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, downsample_stride=downsample_stride, downsample_padding=0, ) self.down_blocks.append(down_block) self.mid_block = HunyuanVideoMidBlock3D( in_channels=block_out_channels[-1], resnet_eps=1e-6, resnet_act_fn=act_fn, attention_head_dim=block_out_channels[-1], resnet_groups=norm_num_groups, add_attention=mid_block_add_attention, ) self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6) self.conv_act = nn.SiLU() conv_out_channels = 2 * out_channels if double_z else out_channels self.conv_out = HunyuanVideoCausalConv3d(block_out_channels[-1], conv_out_channels, kernel_size=3) self.gradient_checkpointing = False def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.conv_in(hidden_states) if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} for down_block in self.down_blocks: hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(down_block), hidden_states, **ckpt_kwargs ) hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block), hidden_states, **ckpt_kwargs ) else: for down_block in self.down_blocks: hidden_states = down_block(hidden_states) hidden_states = self.mid_block(hidden_states) hidden_states = self.conv_norm_out(hidden_states) hidden_states = self.conv_act(hidden_states) hidden_states = self.conv_out(hidden_states) return hidden_states class HunyuanVideoDecoder3D(nn.Module): r""" Causal decoder for 3D video-like data introduced in [Hunyuan Video](https://huggingface.co/papers/2412.03603). """ def __init__( self, in_channels: int = 3, out_channels: int = 3, up_block_types: Tuple[str, ...] = ( "HunyuanVideoUpBlock3D", "HunyuanVideoUpBlock3D", "HunyuanVideoUpBlock3D", "HunyuanVideoUpBlock3D", ), block_out_channels: Tuple[int, ...] = (128, 256, 512, 512), layers_per_block: int = 2, norm_num_groups: int = 32, act_fn: str = "silu", mid_block_add_attention=True, time_compression_ratio: int = 4, spatial_compression_ratio: int = 8, ): super().__init__() self.layers_per_block = layers_per_block self.conv_in = HunyuanVideoCausalConv3d(in_channels, block_out_channels[-1], kernel_size=3, stride=1) self.up_blocks = nn.ModuleList([]) # mid self.mid_block = HunyuanVideoMidBlock3D( in_channels=block_out_channels[-1], resnet_eps=1e-6, resnet_act_fn=act_fn, attention_head_dim=block_out_channels[-1], resnet_groups=norm_num_groups, add_attention=mid_block_add_attention, ) # up reversed_block_out_channels = list(reversed(block_out_channels)) output_channel = reversed_block_out_channels[0] for i, up_block_type in enumerate(up_block_types): if up_block_type != "HunyuanVideoUpBlock3D": raise ValueError(f"Unsupported up_block_type: {up_block_type}") prev_output_channel = output_channel output_channel = reversed_block_out_channels[i] is_final_block = i == len(block_out_channels) - 1 num_spatial_upsample_layers = int(np.log2(spatial_compression_ratio)) num_time_upsample_layers = int(np.log2(time_compression_ratio)) if time_compression_ratio == 4: add_spatial_upsample = bool(i < num_spatial_upsample_layers) add_time_upsample = bool( i >= len(block_out_channels) - 1 - num_time_upsample_layers and not is_final_block ) else: raise ValueError(f"Unsupported time_compression_ratio: {time_compression_ratio}") upsample_scale_factor_HW = (2, 2) if add_spatial_upsample else (1, 1) upsample_scale_factor_T = (2,) if add_time_upsample else (1,) upsample_scale_factor = tuple(upsample_scale_factor_T + upsample_scale_factor_HW) up_block = HunyuanVideoUpBlock3D( num_layers=self.layers_per_block + 1, in_channels=prev_output_channel, out_channels=output_channel, add_upsample=bool(add_spatial_upsample or add_time_upsample), upsample_scale_factor=upsample_scale_factor, resnet_eps=1e-6, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, ) self.up_blocks.append(up_block) prev_output_channel = output_channel # out self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6) self.conv_act = nn.SiLU() self.conv_out = HunyuanVideoCausalConv3d(block_out_channels[0], out_channels, kernel_size=3) self.gradient_checkpointing = False def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.conv_in(hidden_states) if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block), hidden_states, **ckpt_kwargs ) for up_block in self.up_blocks: hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(up_block), hidden_states, **ckpt_kwargs ) else: hidden_states = self.mid_block(hidden_states) for up_block in self.up_blocks: hidden_states = up_block(hidden_states) # post-process hidden_states = self.conv_norm_out(hidden_states) hidden_states = self.conv_act(hidden_states) hidden_states = self.conv_out(hidden_states) return hidden_states class AutoencoderKLHunyuanVideo(ModelMixin, ConfigMixin): r""" A VAE model with KL loss for encoding videos into latents and decoding latent representations into videos. Introduced in [HunyuanVideo](https://huggingface.co/papers/2412.03603). This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented for all models (such as downloading or saving). """ _supports_gradient_checkpointing = True @register_to_config def __init__( self, in_channels: int = 3, out_channels: int = 3, latent_channels: int = 16, down_block_types: Tuple[str, ...] = ( "HunyuanVideoDownBlock3D", "HunyuanVideoDownBlock3D", "HunyuanVideoDownBlock3D", "HunyuanVideoDownBlock3D", ), up_block_types: Tuple[str, ...] = ( "HunyuanVideoUpBlock3D", "HunyuanVideoUpBlock3D", "HunyuanVideoUpBlock3D", "HunyuanVideoUpBlock3D", ), block_out_channels: Tuple[int] = (128, 256, 512, 512), layers_per_block: int = 2, act_fn: str = "silu", norm_num_groups: int = 32, scaling_factor: float = 0.476986, spatial_compression_ratio: int = 8, temporal_compression_ratio: int = 4, mid_block_add_attention: bool = True, ) -> None: super().__init__() self.time_compression_ratio = temporal_compression_ratio self.encoder = HunyuanVideoEncoder3D( in_channels=in_channels, out_channels=latent_channels, down_block_types=down_block_types, block_out_channels=block_out_channels, layers_per_block=layers_per_block, norm_num_groups=norm_num_groups, act_fn=act_fn, double_z=True, mid_block_add_attention=mid_block_add_attention, temporal_compression_ratio=temporal_compression_ratio, spatial_compression_ratio=spatial_compression_ratio, ) self.decoder = HunyuanVideoDecoder3D( in_channels=latent_channels, out_channels=out_channels, up_block_types=up_block_types, block_out_channels=block_out_channels, layers_per_block=layers_per_block, norm_num_groups=norm_num_groups, act_fn=act_fn, time_compression_ratio=temporal_compression_ratio, spatial_compression_ratio=spatial_compression_ratio, mid_block_add_attention=mid_block_add_attention, ) self.quant_conv = nn.Conv3d(2 * latent_channels, 2 * latent_channels, kernel_size=1) self.post_quant_conv = nn.Conv3d(latent_channels, latent_channels, kernel_size=1) self.spatial_compression_ratio = spatial_compression_ratio self.temporal_compression_ratio = temporal_compression_ratio # When decoding a batch of video latents at a time, one can save memory by slicing across the batch dimension # to perform decoding of a single video latent at a time. self.use_slicing = False # When decoding spatially large video latents, the memory requirement is very high. By breaking the video latent # frames spatially into smaller tiles and performing multiple forward passes for decoding, and then blending the # intermediate tiles together, the memory requirement can be lowered. self.use_tiling = False # When decoding temporally long video latents, the memory requirement is very high. By decoding latent frames # at a fixed frame batch size (based on `self.num_latent_frames_batch_sizes`), the memory requirement can be lowered. self.use_framewise_encoding = True self.use_framewise_decoding = True # The minimal tile height and width for spatial tiling to be used self.tile_sample_min_height = 256 self.tile_sample_min_width = 256 self.tile_sample_min_num_frames = 16 # The minimal distance between two spatial tiles self.tile_sample_stride_height = 192 self.tile_sample_stride_width = 192 self.tile_sample_stride_num_frames = 12 def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, (HunyuanVideoEncoder3D, HunyuanVideoDecoder3D)): module.gradient_checkpointing = value def enable_tiling( self, tile_sample_min_height: Optional[int] = None, tile_sample_min_width: Optional[int] = None, tile_sample_min_num_frames: Optional[int] = None, tile_sample_stride_height: Optional[float] = None, tile_sample_stride_width: Optional[float] = None, tile_sample_stride_num_frames: Optional[float] = None, ) -> None: r""" Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow processing larger images. Args: tile_sample_min_height (`int`, *optional*): The minimum height required for a sample to be separated into tiles across the height dimension. tile_sample_min_width (`int`, *optional*): The minimum width required for a sample to be separated into tiles across the width dimension. tile_sample_min_num_frames (`int`, *optional*): The minimum number of frames required for a sample to be separated into tiles across the frame dimension. tile_sample_stride_height (`int`, *optional*): The minimum amount of overlap between two consecutive vertical tiles. This is to ensure that there are no tiling artifacts produced across the height dimension. tile_sample_stride_width (`int`, *optional*): The stride between two consecutive horizontal tiles. This is to ensure that there are no tiling artifacts produced across the width dimension. tile_sample_stride_num_frames (`int`, *optional*): The stride between two consecutive frame tiles. This is to ensure that there are no tiling artifacts produced across the frame dimension. """ self.use_tiling = True self.tile_sample_min_height = tile_sample_min_height or self.tile_sample_min_height self.tile_sample_min_width = tile_sample_min_width or self.tile_sample_min_width self.tile_sample_min_num_frames = tile_sample_min_num_frames or self.tile_sample_min_num_frames self.tile_sample_stride_height = tile_sample_stride_height or self.tile_sample_stride_height self.tile_sample_stride_width = tile_sample_stride_width or self.tile_sample_stride_width self.tile_sample_stride_num_frames = tile_sample_stride_num_frames or self.tile_sample_stride_num_frames def disable_tiling(self) -> None: r""" Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing decoding in one step. """ self.use_tiling = False def enable_slicing(self) -> None: r""" Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. """ self.use_slicing = True def disable_slicing(self) -> None: r""" Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing decoding in one step. """ self.use_slicing = False def _encode(self, x: torch.Tensor) -> torch.Tensor: batch_size, num_channels, num_frames, height, width = x.shape if self.use_framewise_decoding and num_frames > self.tile_sample_min_num_frames: return self._temporal_tiled_encode(x) if self.use_tiling and (width > self.tile_sample_min_width or height > self.tile_sample_min_height): return self.tiled_encode(x) x = self.encoder(x) enc = self.quant_conv(x) return enc @apply_forward_hook def encode( self, x: torch.Tensor, return_dict: bool = True ) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]: r""" Encode a batch of images into latents. Args: x (`torch.Tensor`): Input batch of images. return_dict (`bool`, *optional*, defaults to `True`): Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple. Returns: The latent representations of the encoded videos. If `return_dict` is True, a [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned. """ if self.use_slicing and x.shape[0] > 1: encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)] h = torch.cat(encoded_slices) else: h = self._encode(x) posterior = DiagonalGaussianDistribution(h) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=posterior) def _decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: batch_size, num_channels, num_frames, height, width = z.shape tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio tile_latent_min_width = self.tile_sample_stride_width // self.spatial_compression_ratio tile_latent_min_num_frames = self.tile_sample_min_num_frames // self.temporal_compression_ratio if self.use_framewise_decoding and num_frames > tile_latent_min_num_frames: return self._temporal_tiled_decode(z, return_dict=return_dict) if self.use_tiling and (width > tile_latent_min_width or height > tile_latent_min_height): return self.tiled_decode(z, return_dict=return_dict) z = self.post_quant_conv(z) dec = self.decoder(z) if not return_dict: return (dec,) return DecoderOutput(sample=dec) @apply_forward_hook def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: r""" Decode a batch of images. Args: z (`torch.Tensor`): Input batch of latent vectors. return_dict (`bool`, *optional*, defaults to `True`): Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. Returns: [`~models.vae.DecoderOutput`] or `tuple`: If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is returned. """ if self.use_slicing and z.shape[0] > 1: decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)] decoded = torch.cat(decoded_slices) else: decoded = self._decode(z).sample if not return_dict: return (decoded,) return DecoderOutput(sample=decoded) def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: blend_extent = min(a.shape[-2], b.shape[-2], blend_extent) for y in range(blend_extent): b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * ( y / blend_extent ) return b def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: blend_extent = min(a.shape[-1], b.shape[-1], blend_extent) for x in range(blend_extent): b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * ( x / blend_extent ) return b def blend_t(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: blend_extent = min(a.shape[-3], b.shape[-3], blend_extent) for x in range(blend_extent): b[:, :, x, :, :] = a[:, :, -blend_extent + x, :, :] * (1 - x / blend_extent) + b[:, :, x, :, :] * ( x / blend_extent ) return b def tiled_encode(self, x: torch.Tensor) -> AutoencoderKLOutput: r"""Encode a batch of images using a tiled encoder. Args: x (`torch.Tensor`): Input batch of videos. Returns: `torch.Tensor`: The latent representation of the encoded videos. """ batch_size, num_channels, num_frames, height, width = x.shape latent_height = height // self.spatial_compression_ratio latent_width = width // self.spatial_compression_ratio tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio blend_height = tile_latent_min_height - tile_latent_stride_height blend_width = tile_latent_min_width - tile_latent_stride_width # Split x into overlapping tiles and encode them separately. # The tiles have an overlap to avoid seams between tiles. rows = [] for i in range(0, height, self.tile_sample_stride_height): row = [] for j in range(0, width, self.tile_sample_stride_width): tile = x[:, :, :, i : i + self.tile_sample_min_height, j : j + self.tile_sample_min_width] tile = self.encoder(tile) tile = self.quant_conv(tile) row.append(tile) rows.append(row) result_rows = [] for i, row in enumerate(rows): result_row = [] for j, tile in enumerate(row): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: tile = self.blend_v(rows[i - 1][j], tile, blend_height) if j > 0: tile = self.blend_h(row[j - 1], tile, blend_width) result_row.append(tile[:, :, :, :tile_latent_stride_height, :tile_latent_stride_width]) result_rows.append(torch.cat(result_row, dim=4)) enc = torch.cat(result_rows, dim=3)[:, :, :, :latent_height, :latent_width] return enc def tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: r""" Decode a batch of images using a tiled decoder. Args: z (`torch.Tensor`): Input batch of latent vectors. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. Returns: [`~models.vae.DecoderOutput`] or `tuple`: If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is returned. """ batch_size, num_channels, num_frames, height, width = z.shape sample_height = height * self.spatial_compression_ratio sample_width = width * self.spatial_compression_ratio tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio blend_height = self.tile_sample_min_height - self.tile_sample_stride_height blend_width = self.tile_sample_min_width - self.tile_sample_stride_width # Split z into overlapping tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. rows = [] for i in range(0, height, tile_latent_stride_height): row = [] for j in range(0, width, tile_latent_stride_width): tile = z[:, :, :, i : i + tile_latent_min_height, j : j + tile_latent_min_width] tile = self.post_quant_conv(tile) decoded = self.decoder(tile) row.append(decoded) rows.append(row) result_rows = [] for i, row in enumerate(rows): result_row = [] for j, tile in enumerate(row): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: tile = self.blend_v(rows[i - 1][j], tile, blend_height) if j > 0: tile = self.blend_h(row[j - 1], tile, blend_width) result_row.append(tile[:, :, :, : self.tile_sample_stride_height, : self.tile_sample_stride_width]) result_rows.append(torch.cat(result_row, dim=-1)) dec = torch.cat(result_rows, dim=3)[:, :, :, :sample_height, :sample_width] if not return_dict: return (dec,) return DecoderOutput(sample=dec) def _temporal_tiled_encode(self, x: torch.Tensor) -> AutoencoderKLOutput: batch_size, num_channels, num_frames, height, width = x.shape latent_num_frames = (num_frames - 1) // self.temporal_compression_ratio + 1 tile_latent_min_num_frames = self.tile_sample_min_num_frames // self.temporal_compression_ratio tile_latent_stride_num_frames = self.tile_sample_stride_num_frames // self.temporal_compression_ratio blend_num_frames = tile_latent_min_num_frames - tile_latent_stride_num_frames row = [] for i in range(0, num_frames, self.tile_sample_stride_num_frames): tile = x[:, :, i : i + self.tile_sample_min_num_frames + 1, :, :] if self.use_tiling and (height > self.tile_sample_min_height or width > self.tile_sample_min_width): tile = self.tiled_encode(tile) else: tile = self.encoder(tile) tile = self.quant_conv(tile) if i > 0: tile = tile[:, :, 1:, :, :] row.append(tile) result_row = [] for i, tile in enumerate(row): if i > 0: tile = self.blend_t(row[i - 1], tile, blend_num_frames) result_row.append(tile[:, :, :tile_latent_stride_num_frames, :, :]) else: result_row.append(tile[:, :, : tile_latent_stride_num_frames + 1, :, :]) enc = torch.cat(result_row, dim=2)[:, :, :latent_num_frames] return enc def _temporal_tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: batch_size, num_channels, num_frames, height, width = z.shape num_sample_frames = (num_frames - 1) * self.temporal_compression_ratio + 1 tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio tile_latent_min_num_frames = self.tile_sample_min_num_frames // self.temporal_compression_ratio tile_latent_stride_num_frames = self.tile_sample_stride_num_frames // self.temporal_compression_ratio blend_num_frames = self.tile_sample_min_num_frames - self.tile_sample_stride_num_frames row = [] for i in range(0, num_frames, tile_latent_stride_num_frames): tile = z[:, :, i : i + tile_latent_min_num_frames + 1, :, :] if self.use_tiling and (tile.shape[-1] > tile_latent_min_width or tile.shape[-2] > tile_latent_min_height): decoded = self.tiled_decode(tile, return_dict=True).sample else: tile = self.post_quant_conv(tile) decoded = self.decoder(tile) if i > 0: decoded = decoded[:, :, 1:, :, :] row.append(decoded) result_row = [] for i, tile in enumerate(row): if i > 0: tile = self.blend_t(row[i - 1], tile, blend_num_frames) result_row.append(tile[:, :, : self.tile_sample_stride_num_frames, :, :]) else: result_row.append(tile[:, :, : self.tile_sample_stride_num_frames + 1, :, :]) dec = torch.cat(result_row, dim=2)[:, :, :num_sample_frames] if not return_dict: return (dec,) return DecoderOutput(sample=dec) def forward( self, sample: torch.Tensor, sample_posterior: bool = False, return_dict: bool = True, generator: Optional[torch.Generator] = None, ) -> Union[DecoderOutput, torch.Tensor]: r""" Args: sample (`torch.Tensor`): Input sample. sample_posterior (`bool`, *optional*, defaults to `False`): Whether to sample from the posterior. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`DecoderOutput`] instead of a plain tuple. """ x = sample posterior = self.encode(x).latent_dist if sample_posterior: z = posterior.sample(generator=generator) else: z = posterior.mode() dec = self.decode(z, return_dict=return_dict) return dec