# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from typing import Callable, Dict, List, Optional, Union import torch from huggingface_hub.utils import validate_hf_hub_args from ..utils import ( USE_PEFT_BACKEND, deprecate, get_submodule_by_name, is_peft_available, is_peft_version, is_torch_version, is_transformers_available, is_transformers_version, logging, ) from .lora_base import ( # noqa LORA_WEIGHT_NAME, LORA_WEIGHT_NAME_SAFE, LoraBaseMixin, _fetch_state_dict, _load_lora_into_text_encoder, ) from .lora_conversion_utils import ( _convert_bfl_flux_control_lora_to_diffusers, _convert_hunyuan_video_lora_to_diffusers, _convert_kohya_flux_lora_to_diffusers, _convert_non_diffusers_lora_to_diffusers, _convert_xlabs_flux_lora_to_diffusers, _maybe_map_sgm_blocks_to_diffusers, ) _LOW_CPU_MEM_USAGE_DEFAULT_LORA = False if is_torch_version(">=", "1.9.0"): if ( is_peft_available() and is_peft_version(">=", "0.13.1") and is_transformers_available() and is_transformers_version(">", "4.45.2") ): _LOW_CPU_MEM_USAGE_DEFAULT_LORA = True logger = logging.get_logger(__name__) TEXT_ENCODER_NAME = "text_encoder" UNET_NAME = "unet" TRANSFORMER_NAME = "transformer" _MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX = {"x_embedder": "in_channels"} class StableDiffusionLoraLoaderMixin(LoraBaseMixin): r""" Load LoRA layers into Stable Diffusion [`UNet2DConditionModel`] and [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel). """ _lora_loadable_modules = ["unet", "text_encoder"] unet_name = UNET_NAME text_encoder_name = TEXT_ENCODER_NAME def load_lora_weights( self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs ): """ Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded. See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details on how the state dict is loaded into `self.unet`. See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder`] for more details on how the state dict is loaded into `self.text_encoder`. Parameters: pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. adapter_name (`str`, *optional*): Adapter name to be used for referencing the loaded adapter model. If not specified, it will use `default_{i}` where i is the total number of adapters being loaded. low_cpu_mem_usage (`bool`, *optional*): Speed up model loading by only loading the pretrained LoRA weights and not initializing the random weights. kwargs (`dict`, *optional*): See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. """ if not USE_PEFT_BACKEND: raise ValueError("PEFT backend is required for this method.") low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA) if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"): raise ValueError( "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." ) # if a dict is passed, copy it instead of modifying it inplace if isinstance(pretrained_model_name_or_path_or_dict, dict): pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy() # First, ensure that the checkpoint is a compatible one and can be successfully loaded. state_dict, network_alphas = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs) is_correct_format = all("lora" in key for key in state_dict.keys()) if not is_correct_format: raise ValueError("Invalid LoRA checkpoint.") self.load_lora_into_unet( state_dict, network_alphas=network_alphas, unet=getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet, adapter_name=adapter_name, _pipeline=self, low_cpu_mem_usage=low_cpu_mem_usage, ) self.load_lora_into_text_encoder( state_dict, network_alphas=network_alphas, text_encoder=getattr(self, self.text_encoder_name) if not hasattr(self, "text_encoder") else self.text_encoder, lora_scale=self.lora_scale, adapter_name=adapter_name, _pipeline=self, low_cpu_mem_usage=low_cpu_mem_usage, ) @classmethod @validate_hf_hub_args def lora_state_dict( cls, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs, ): r""" Return state dict for lora weights and the network alphas. We support loading A1111 formatted LoRA checkpoints in a limited capacity. This function is experimental and might change in the future. Parameters: pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): Can be either: - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on the Hub. - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved with [`ModelMixin.save_pretrained`]. - A [torch state dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). cache_dir (`Union[str, os.PathLike]`, *optional*): Path to a directory where a downloaded pretrained model configuration is cached if the standard cache is not used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. local_files_only (`bool`, *optional*, defaults to `False`): Whether to only load local model weights and configuration files or not. If set to `True`, the model won't be downloaded from the Hub. token (`str` or *bool*, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from `diffusers-cli login` (stored in `~/.huggingface`) is used. revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier allowed by Git. subfolder (`str`, *optional*, defaults to `""`): The subfolder location of a model file within a larger model repository on the Hub or locally. weight_name (`str`, *optional*, defaults to None): Name of the serialized state dict file. """ # Load the main state dict first which has the LoRA layers for either of # UNet and text encoder or both. cache_dir = kwargs.pop("cache_dir", None) force_download = kwargs.pop("force_download", False) proxies = kwargs.pop("proxies", None) local_files_only = kwargs.pop("local_files_only", None) token = kwargs.pop("token", None) revision = kwargs.pop("revision", None) subfolder = kwargs.pop("subfolder", None) weight_name = kwargs.pop("weight_name", None) unet_config = kwargs.pop("unet_config", None) use_safetensors = kwargs.pop("use_safetensors", None) allow_pickle = False if use_safetensors is None: use_safetensors = True allow_pickle = True user_agent = { "file_type": "attn_procs_weights", "framework": "pytorch", } state_dict = _fetch_state_dict( pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict, weight_name=weight_name, use_safetensors=use_safetensors, local_files_only=local_files_only, cache_dir=cache_dir, force_download=force_download, proxies=proxies, token=token, revision=revision, subfolder=subfolder, user_agent=user_agent, allow_pickle=allow_pickle, ) is_dora_scale_present = any("dora_scale" in k for k in state_dict) if is_dora_scale_present: warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new." logger.warning(warn_msg) state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k} network_alphas = None # TODO: replace it with a method from `state_dict_utils` if all( ( k.startswith("lora_te_") or k.startswith("lora_unet_") or k.startswith("lora_te1_") or k.startswith("lora_te2_") ) for k in state_dict.keys() ): # Map SDXL blocks correctly. if unet_config is not None: # use unet config to remap block numbers state_dict = _maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config) state_dict, network_alphas = _convert_non_diffusers_lora_to_diffusers(state_dict) return state_dict, network_alphas @classmethod def load_lora_into_unet( cls, state_dict, network_alphas, unet, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False ): """ This will load the LoRA layers specified in `state_dict` into `unet`. Parameters: state_dict (`dict`): A standard state dict containing the lora layer parameters. The keys can either be indexed directly into the unet or prefixed with an additional `unet` which can be used to distinguish between text encoder lora layers. network_alphas (`Dict[str, float]`): The value of the network alpha used for stable learning and preventing underflow. This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning). unet (`UNet2DConditionModel`): The UNet model to load the LoRA layers into. adapter_name (`str`, *optional*): Adapter name to be used for referencing the loaded adapter model. If not specified, it will use `default_{i}` where i is the total number of adapters being loaded. low_cpu_mem_usage (`bool`, *optional*): Speed up model loading only loading the pretrained LoRA weights and not initializing the random weights. """ if not USE_PEFT_BACKEND: raise ValueError("PEFT backend is required for this method.") if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"): raise ValueError( "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." ) # If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918), # then the `state_dict` keys should have `cls.unet_name` and/or `cls.text_encoder_name` as # their prefixes. keys = list(state_dict.keys()) only_text_encoder = all(key.startswith(cls.text_encoder_name) for key in keys) if not only_text_encoder: # Load the layers corresponding to UNet. logger.info(f"Loading {cls.unet_name}.") unet.load_lora_adapter( state_dict, prefix=cls.unet_name, network_alphas=network_alphas, adapter_name=adapter_name, _pipeline=_pipeline, low_cpu_mem_usage=low_cpu_mem_usage, ) @classmethod def load_lora_into_text_encoder( cls, state_dict, network_alphas, text_encoder, prefix=None, lora_scale=1.0, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False, ): """ This will load the LoRA layers specified in `state_dict` into `text_encoder` Parameters: state_dict (`dict`): A standard state dict containing the lora layer parameters. The key should be prefixed with an additional `text_encoder` to distinguish between unet lora layers. network_alphas (`Dict[str, float]`): The value of the network alpha used for stable learning and preventing underflow. This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning). text_encoder (`CLIPTextModel`): The text encoder model to load the LoRA layers into. prefix (`str`): Expected prefix of the `text_encoder` in the `state_dict`. lora_scale (`float`): How much to scale the output of the lora linear layer before it is added with the output of the regular lora layer. adapter_name (`str`, *optional*): Adapter name to be used for referencing the loaded adapter model. If not specified, it will use `default_{i}` where i is the total number of adapters being loaded. low_cpu_mem_usage (`bool`, *optional*): Speed up model loading by only loading the pretrained LoRA weights and not initializing the random weights. """ _load_lora_into_text_encoder( state_dict=state_dict, network_alphas=network_alphas, lora_scale=lora_scale, text_encoder=text_encoder, prefix=prefix, text_encoder_name=cls.text_encoder_name, adapter_name=adapter_name, _pipeline=_pipeline, low_cpu_mem_usage=low_cpu_mem_usage, ) @classmethod def save_lora_weights( cls, save_directory: Union[str, os.PathLike], unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, text_encoder_lora_layers: Dict[str, torch.nn.Module] = None, is_main_process: bool = True, weight_name: str = None, save_function: Callable = None, safe_serialization: bool = True, ): r""" Save the LoRA parameters corresponding to the UNet and text encoder. Arguments: save_directory (`str` or `os.PathLike`): Directory to save LoRA parameters to. Will be created if it doesn't exist. unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): State dict of the LoRA layers corresponding to the `unet`. text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text encoder LoRA state dict because it comes from 🤗 Transformers. is_main_process (`bool`, *optional*, defaults to `True`): Whether the process calling this is the main process or not. Useful during distributed training and you need to call this function on all processes. In this case, set `is_main_process=True` only on the main process to avoid race conditions. save_function (`Callable`): The function to use to save the state dictionary. Useful during distributed training when you need to replace `torch.save` with another method. Can be configured with the environment variable `DIFFUSERS_SAVE_MODE`. safe_serialization (`bool`, *optional*, defaults to `True`): Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`. """ state_dict = {} if not (unet_lora_layers or text_encoder_lora_layers): raise ValueError("You must pass at least one of `unet_lora_layers` and `text_encoder_lora_layers`.") if unet_lora_layers: state_dict.update(cls.pack_weights(unet_lora_layers, cls.unet_name)) if text_encoder_lora_layers: state_dict.update(cls.pack_weights(text_encoder_lora_layers, cls.text_encoder_name)) # Save the model cls.write_lora_layers( state_dict=state_dict, save_directory=save_directory, is_main_process=is_main_process, weight_name=weight_name, save_function=save_function, safe_serialization=safe_serialization, ) def fuse_lora( self, components: List[str] = ["unet", "text_encoder"], lora_scale: float = 1.0, safe_fusing: bool = False, adapter_names: Optional[List[str]] = None, **kwargs, ): r""" Fuses the LoRA parameters into the original parameters of the corresponding blocks. This is an experimental API. Args: components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. lora_scale (`float`, defaults to 1.0): Controls how much to influence the outputs with the LoRA parameters. safe_fusing (`bool`, defaults to `False`): Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. adapter_names (`List[str]`, *optional*): Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. Example: ```py from diffusers import DiffusionPipeline import torch pipeline = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 ).to("cuda") pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") pipeline.fuse_lora(lora_scale=0.7) ``` """ super().fuse_lora( components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names ) def unfuse_lora(self, components: List[str] = ["unet", "text_encoder"], **kwargs): r""" Reverses the effect of [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora). This is an experimental API. Args: components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from. unfuse_unet (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters. unfuse_text_encoder (`bool`, defaults to `True`): Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the LoRA parameters then it won't have any effect. """ super().unfuse_lora(components=components) class StableDiffusionXLLoraLoaderMixin(LoraBaseMixin): r""" Load LoRA layers into Stable Diffusion XL [`UNet2DConditionModel`], [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), and [`CLIPTextModelWithProjection`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection). """ _lora_loadable_modules = ["unet", "text_encoder", "text_encoder_2"] unet_name = UNET_NAME text_encoder_name = TEXT_ENCODER_NAME def load_lora_weights( self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name: Optional[str] = None, **kwargs, ): """ Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded. See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details on how the state dict is loaded into `self.unet`. See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder`] for more details on how the state dict is loaded into `self.text_encoder`. Parameters: pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. adapter_name (`str`, *optional*): Adapter name to be used for referencing the loaded adapter model. If not specified, it will use `default_{i}` where i is the total number of adapters being loaded. low_cpu_mem_usage (`bool`, *optional*): Speed up model loading by only loading the pretrained LoRA weights and not initializing the random weights. kwargs (`dict`, *optional*): See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. """ if not USE_PEFT_BACKEND: raise ValueError("PEFT backend is required for this method.") low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA) if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"): raise ValueError( "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." ) # We could have accessed the unet config from `lora_state_dict()` too. We pass # it here explicitly to be able to tell that it's coming from an SDXL # pipeline. # if a dict is passed, copy it instead of modifying it inplace if isinstance(pretrained_model_name_or_path_or_dict, dict): pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy() # First, ensure that the checkpoint is a compatible one and can be successfully loaded. state_dict, network_alphas = self.lora_state_dict( pretrained_model_name_or_path_or_dict, unet_config=self.unet.config, **kwargs, ) is_correct_format = all("lora" in key for key in state_dict.keys()) if not is_correct_format: raise ValueError("Invalid LoRA checkpoint.") self.load_lora_into_unet( state_dict, network_alphas=network_alphas, unet=self.unet, adapter_name=adapter_name, _pipeline=self, low_cpu_mem_usage=low_cpu_mem_usage, ) text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k} if len(text_encoder_state_dict) > 0: self.load_lora_into_text_encoder( text_encoder_state_dict, network_alphas=network_alphas, text_encoder=self.text_encoder, prefix="text_encoder", lora_scale=self.lora_scale, adapter_name=adapter_name, _pipeline=self, low_cpu_mem_usage=low_cpu_mem_usage, ) text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k} if len(text_encoder_2_state_dict) > 0: self.load_lora_into_text_encoder( text_encoder_2_state_dict, network_alphas=network_alphas, text_encoder=self.text_encoder_2, prefix="text_encoder_2", lora_scale=self.lora_scale, adapter_name=adapter_name, _pipeline=self, low_cpu_mem_usage=low_cpu_mem_usage, ) @classmethod @validate_hf_hub_args # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.lora_state_dict def lora_state_dict( cls, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs, ): r""" Return state dict for lora weights and the network alphas. We support loading A1111 formatted LoRA checkpoints in a limited capacity. This function is experimental and might change in the future. Parameters: pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): Can be either: - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on the Hub. - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved with [`ModelMixin.save_pretrained`]. - A [torch state dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). cache_dir (`Union[str, os.PathLike]`, *optional*): Path to a directory where a downloaded pretrained model configuration is cached if the standard cache is not used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. local_files_only (`bool`, *optional*, defaults to `False`): Whether to only load local model weights and configuration files or not. If set to `True`, the model won't be downloaded from the Hub. token (`str` or *bool*, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from `diffusers-cli login` (stored in `~/.huggingface`) is used. revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier allowed by Git. subfolder (`str`, *optional*, defaults to `""`): The subfolder location of a model file within a larger model repository on the Hub or locally. weight_name (`str`, *optional*, defaults to None): Name of the serialized state dict file. """ # Load the main state dict first which has the LoRA layers for either of # UNet and text encoder or both. cache_dir = kwargs.pop("cache_dir", None) force_download = kwargs.pop("force_download", False) proxies = kwargs.pop("proxies", None) local_files_only = kwargs.pop("local_files_only", None) token = kwargs.pop("token", None) revision = kwargs.pop("revision", None) subfolder = kwargs.pop("subfolder", None) weight_name = kwargs.pop("weight_name", None) unet_config = kwargs.pop("unet_config", None) use_safetensors = kwargs.pop("use_safetensors", None) allow_pickle = False if use_safetensors is None: use_safetensors = True allow_pickle = True user_agent = { "file_type": "attn_procs_weights", "framework": "pytorch", } state_dict = _fetch_state_dict( pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict, weight_name=weight_name, use_safetensors=use_safetensors, local_files_only=local_files_only, cache_dir=cache_dir, force_download=force_download, proxies=proxies, token=token, revision=revision, subfolder=subfolder, user_agent=user_agent, allow_pickle=allow_pickle, ) is_dora_scale_present = any("dora_scale" in k for k in state_dict) if is_dora_scale_present: warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new." logger.warning(warn_msg) state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k} network_alphas = None # TODO: replace it with a method from `state_dict_utils` if all( ( k.startswith("lora_te_") or k.startswith("lora_unet_") or k.startswith("lora_te1_") or k.startswith("lora_te2_") ) for k in state_dict.keys() ): # Map SDXL blocks correctly. if unet_config is not None: # use unet config to remap block numbers state_dict = _maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config) state_dict, network_alphas = _convert_non_diffusers_lora_to_diffusers(state_dict) return state_dict, network_alphas @classmethod # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_unet def load_lora_into_unet( cls, state_dict, network_alphas, unet, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False ): """ This will load the LoRA layers specified in `state_dict` into `unet`. Parameters: state_dict (`dict`): A standard state dict containing the lora layer parameters. The keys can either be indexed directly into the unet or prefixed with an additional `unet` which can be used to distinguish between text encoder lora layers. network_alphas (`Dict[str, float]`): The value of the network alpha used for stable learning and preventing underflow. This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning). unet (`UNet2DConditionModel`): The UNet model to load the LoRA layers into. adapter_name (`str`, *optional*): Adapter name to be used for referencing the loaded adapter model. If not specified, it will use `default_{i}` where i is the total number of adapters being loaded. low_cpu_mem_usage (`bool`, *optional*): Speed up model loading only loading the pretrained LoRA weights and not initializing the random weights. """ if not USE_PEFT_BACKEND: raise ValueError("PEFT backend is required for this method.") if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"): raise ValueError( "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." ) # If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918), # then the `state_dict` keys should have `cls.unet_name` and/or `cls.text_encoder_name` as # their prefixes. keys = list(state_dict.keys()) only_text_encoder = all(key.startswith(cls.text_encoder_name) for key in keys) if not only_text_encoder: # Load the layers corresponding to UNet. logger.info(f"Loading {cls.unet_name}.") unet.load_lora_adapter( state_dict, prefix=cls.unet_name, network_alphas=network_alphas, adapter_name=adapter_name, _pipeline=_pipeline, low_cpu_mem_usage=low_cpu_mem_usage, ) @classmethod # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder def load_lora_into_text_encoder( cls, state_dict, network_alphas, text_encoder, prefix=None, lora_scale=1.0, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False, ): """ This will load the LoRA layers specified in `state_dict` into `text_encoder` Parameters: state_dict (`dict`): A standard state dict containing the lora layer parameters. The key should be prefixed with an additional `text_encoder` to distinguish between unet lora layers. network_alphas (`Dict[str, float]`): The value of the network alpha used for stable learning and preventing underflow. This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning). text_encoder (`CLIPTextModel`): The text encoder model to load the LoRA layers into. prefix (`str`): Expected prefix of the `text_encoder` in the `state_dict`. lora_scale (`float`): How much to scale the output of the lora linear layer before it is added with the output of the regular lora layer. adapter_name (`str`, *optional*): Adapter name to be used for referencing the loaded adapter model. If not specified, it will use `default_{i}` where i is the total number of adapters being loaded. low_cpu_mem_usage (`bool`, *optional*): Speed up model loading by only loading the pretrained LoRA weights and not initializing the random weights. """ _load_lora_into_text_encoder( state_dict=state_dict, network_alphas=network_alphas, lora_scale=lora_scale, text_encoder=text_encoder, prefix=prefix, text_encoder_name=cls.text_encoder_name, adapter_name=adapter_name, _pipeline=_pipeline, low_cpu_mem_usage=low_cpu_mem_usage, ) @classmethod def save_lora_weights( cls, save_directory: Union[str, os.PathLike], unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, is_main_process: bool = True, weight_name: str = None, save_function: Callable = None, safe_serialization: bool = True, ): r""" Save the LoRA parameters corresponding to the UNet and text encoder. Arguments: save_directory (`str` or `os.PathLike`): Directory to save LoRA parameters to. Will be created if it doesn't exist. unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): State dict of the LoRA layers corresponding to the `unet`. text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text encoder LoRA state dict because it comes from 🤗 Transformers. text_encoder_2_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): State dict of the LoRA layers corresponding to the `text_encoder_2`. Must explicitly pass the text encoder LoRA state dict because it comes from 🤗 Transformers. is_main_process (`bool`, *optional*, defaults to `True`): Whether the process calling this is the main process or not. Useful during distributed training and you need to call this function on all processes. In this case, set `is_main_process=True` only on the main process to avoid race conditions. save_function (`Callable`): The function to use to save the state dictionary. Useful during distributed training when you need to replace `torch.save` with another method. Can be configured with the environment variable `DIFFUSERS_SAVE_MODE`. safe_serialization (`bool`, *optional*, defaults to `True`): Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`. """ state_dict = {} if not (unet_lora_layers or text_encoder_lora_layers or text_encoder_2_lora_layers): raise ValueError( "You must pass at least one of `unet_lora_layers`, `text_encoder_lora_layers` or `text_encoder_2_lora_layers`." ) if unet_lora_layers: state_dict.update(cls.pack_weights(unet_lora_layers, "unet")) if text_encoder_lora_layers: state_dict.update(cls.pack_weights(text_encoder_lora_layers, "text_encoder")) if text_encoder_2_lora_layers: state_dict.update(cls.pack_weights(text_encoder_2_lora_layers, "text_encoder_2")) cls.write_lora_layers( state_dict=state_dict, save_directory=save_directory, is_main_process=is_main_process, weight_name=weight_name, save_function=save_function, safe_serialization=safe_serialization, ) def fuse_lora( self, components: List[str] = ["unet", "text_encoder", "text_encoder_2"], lora_scale: float = 1.0, safe_fusing: bool = False, adapter_names: Optional[List[str]] = None, **kwargs, ): r""" Fuses the LoRA parameters into the original parameters of the corresponding blocks. This is an experimental API. Args: components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. lora_scale (`float`, defaults to 1.0): Controls how much to influence the outputs with the LoRA parameters. safe_fusing (`bool`, defaults to `False`): Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. adapter_names (`List[str]`, *optional*): Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. Example: ```py from diffusers import DiffusionPipeline import torch pipeline = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 ).to("cuda") pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") pipeline.fuse_lora(lora_scale=0.7) ``` """ super().fuse_lora( components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names ) def unfuse_lora(self, components: List[str] = ["unet", "text_encoder", "text_encoder_2"], **kwargs): r""" Reverses the effect of [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora). This is an experimental API. Args: components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from. unfuse_unet (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters. unfuse_text_encoder (`bool`, defaults to `True`): Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the LoRA parameters then it won't have any effect. """ super().unfuse_lora(components=components) class SD3LoraLoaderMixin(LoraBaseMixin): r""" Load LoRA layers into [`SD3Transformer2DModel`], [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), and [`CLIPTextModelWithProjection`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection). Specific to [`StableDiffusion3Pipeline`]. """ _lora_loadable_modules = ["transformer", "text_encoder", "text_encoder_2"] transformer_name = TRANSFORMER_NAME text_encoder_name = TEXT_ENCODER_NAME @classmethod @validate_hf_hub_args def lora_state_dict( cls, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs, ): r""" Return state dict for lora weights and the network alphas. We support loading A1111 formatted LoRA checkpoints in a limited capacity. This function is experimental and might change in the future. Parameters: pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): Can be either: - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on the Hub. - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved with [`ModelMixin.save_pretrained`]. - A [torch state dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). cache_dir (`Union[str, os.PathLike]`, *optional*): Path to a directory where a downloaded pretrained model configuration is cached if the standard cache is not used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. local_files_only (`bool`, *optional*, defaults to `False`): Whether to only load local model weights and configuration files or not. If set to `True`, the model won't be downloaded from the Hub. token (`str` or *bool*, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from `diffusers-cli login` (stored in `~/.huggingface`) is used. revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier allowed by Git. subfolder (`str`, *optional*, defaults to `""`): The subfolder location of a model file within a larger model repository on the Hub or locally. """ # Load the main state dict first which has the LoRA layers for either of # transformer and text encoder or both. cache_dir = kwargs.pop("cache_dir", None) force_download = kwargs.pop("force_download", False) proxies = kwargs.pop("proxies", None) local_files_only = kwargs.pop("local_files_only", None) token = kwargs.pop("token", None) revision = kwargs.pop("revision", None) subfolder = kwargs.pop("subfolder", None) weight_name = kwargs.pop("weight_name", None) use_safetensors = kwargs.pop("use_safetensors", None) allow_pickle = False if use_safetensors is None: use_safetensors = True allow_pickle = True user_agent = { "file_type": "attn_procs_weights", "framework": "pytorch", } state_dict = _fetch_state_dict( pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict, weight_name=weight_name, use_safetensors=use_safetensors, local_files_only=local_files_only, cache_dir=cache_dir, force_download=force_download, proxies=proxies, token=token, revision=revision, subfolder=subfolder, user_agent=user_agent, allow_pickle=allow_pickle, ) is_dora_scale_present = any("dora_scale" in k for k in state_dict) if is_dora_scale_present: warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new." logger.warning(warn_msg) state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k} return state_dict def load_lora_weights( self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs ): """ Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded. See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state dict is loaded into `self.transformer`. Parameters: pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. adapter_name (`str`, *optional*): Adapter name to be used for referencing the loaded adapter model. If not specified, it will use `default_{i}` where i is the total number of adapters being loaded. low_cpu_mem_usage (`bool`, *optional*): Speed up model loading by only loading the pretrained LoRA weights and not initializing the random weights. kwargs (`dict`, *optional*): See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. """ if not USE_PEFT_BACKEND: raise ValueError("PEFT backend is required for this method.") low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA) if low_cpu_mem_usage and is_peft_version("<", "0.13.0"): raise ValueError( "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." ) # if a dict is passed, copy it instead of modifying it inplace if isinstance(pretrained_model_name_or_path_or_dict, dict): pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy() # First, ensure that the checkpoint is a compatible one and can be successfully loaded. state_dict = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs) is_correct_format = all("lora" in key for key in state_dict.keys()) if not is_correct_format: raise ValueError("Invalid LoRA checkpoint.") transformer_state_dict = {k: v for k, v in state_dict.items() if "transformer." in k} if len(transformer_state_dict) > 0: self.load_lora_into_transformer( state_dict, transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer, adapter_name=adapter_name, _pipeline=self, low_cpu_mem_usage=low_cpu_mem_usage, ) text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k} if len(text_encoder_state_dict) > 0: self.load_lora_into_text_encoder( text_encoder_state_dict, network_alphas=None, text_encoder=self.text_encoder, prefix="text_encoder", lora_scale=self.lora_scale, adapter_name=adapter_name, _pipeline=self, low_cpu_mem_usage=low_cpu_mem_usage, ) text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k} if len(text_encoder_2_state_dict) > 0: self.load_lora_into_text_encoder( text_encoder_2_state_dict, network_alphas=None, text_encoder=self.text_encoder_2, prefix="text_encoder_2", lora_scale=self.lora_scale, adapter_name=adapter_name, _pipeline=self, low_cpu_mem_usage=low_cpu_mem_usage, ) @classmethod def load_lora_into_transformer( cls, state_dict, transformer, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False ): """ This will load the LoRA layers specified in `state_dict` into `transformer`. Parameters: state_dict (`dict`): A standard state dict containing the lora layer parameters. The keys can either be indexed directly into the unet or prefixed with an additional `unet` which can be used to distinguish between text encoder lora layers. transformer (`SD3Transformer2DModel`): The Transformer model to load the LoRA layers into. adapter_name (`str`, *optional*): Adapter name to be used for referencing the loaded adapter model. If not specified, it will use `default_{i}` where i is the total number of adapters being loaded. low_cpu_mem_usage (`bool`, *optional*): Speed up model loading by only loading the pretrained LoRA weights and not initializing the random weights. """ if low_cpu_mem_usage and is_peft_version("<", "0.13.0"): raise ValueError( "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." ) # Load the layers corresponding to transformer. logger.info(f"Loading {cls.transformer_name}.") transformer.load_lora_adapter( state_dict, network_alphas=None, adapter_name=adapter_name, _pipeline=_pipeline, low_cpu_mem_usage=low_cpu_mem_usage, ) @classmethod # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder def load_lora_into_text_encoder( cls, state_dict, network_alphas, text_encoder, prefix=None, lora_scale=1.0, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False, ): """ This will load the LoRA layers specified in `state_dict` into `text_encoder` Parameters: state_dict (`dict`): A standard state dict containing the lora layer parameters. The key should be prefixed with an additional `text_encoder` to distinguish between unet lora layers. network_alphas (`Dict[str, float]`): The value of the network alpha used for stable learning and preventing underflow. This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning). text_encoder (`CLIPTextModel`): The text encoder model to load the LoRA layers into. prefix (`str`): Expected prefix of the `text_encoder` in the `state_dict`. lora_scale (`float`): How much to scale the output of the lora linear layer before it is added with the output of the regular lora layer. adapter_name (`str`, *optional*): Adapter name to be used for referencing the loaded adapter model. If not specified, it will use `default_{i}` where i is the total number of adapters being loaded. low_cpu_mem_usage (`bool`, *optional*): Speed up model loading by only loading the pretrained LoRA weights and not initializing the random weights. """ _load_lora_into_text_encoder( state_dict=state_dict, network_alphas=network_alphas, lora_scale=lora_scale, text_encoder=text_encoder, prefix=prefix, text_encoder_name=cls.text_encoder_name, adapter_name=adapter_name, _pipeline=_pipeline, low_cpu_mem_usage=low_cpu_mem_usage, ) @classmethod def save_lora_weights( cls, save_directory: Union[str, os.PathLike], transformer_lora_layers: Dict[str, torch.nn.Module] = None, text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, is_main_process: bool = True, weight_name: str = None, save_function: Callable = None, safe_serialization: bool = True, ): r""" Save the LoRA parameters corresponding to the UNet and text encoder. Arguments: save_directory (`str` or `os.PathLike`): Directory to save LoRA parameters to. Will be created if it doesn't exist. transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): State dict of the LoRA layers corresponding to the `transformer`. text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text encoder LoRA state dict because it comes from 🤗 Transformers. text_encoder_2_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): State dict of the LoRA layers corresponding to the `text_encoder_2`. Must explicitly pass the text encoder LoRA state dict because it comes from 🤗 Transformers. is_main_process (`bool`, *optional*, defaults to `True`): Whether the process calling this is the main process or not. Useful during distributed training and you need to call this function on all processes. In this case, set `is_main_process=True` only on the main process to avoid race conditions. save_function (`Callable`): The function to use to save the state dictionary. Useful during distributed training when you need to replace `torch.save` with another method. Can be configured with the environment variable `DIFFUSERS_SAVE_MODE`. safe_serialization (`bool`, *optional*, defaults to `True`): Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`. """ state_dict = {} if not (transformer_lora_layers or text_encoder_lora_layers or text_encoder_2_lora_layers): raise ValueError( "You must pass at least one of `transformer_lora_layers`, `text_encoder_lora_layers`, `text_encoder_2_lora_layers`." ) if transformer_lora_layers: state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name)) if text_encoder_lora_layers: state_dict.update(cls.pack_weights(text_encoder_lora_layers, "text_encoder")) if text_encoder_2_lora_layers: state_dict.update(cls.pack_weights(text_encoder_2_lora_layers, "text_encoder_2")) # Save the model cls.write_lora_layers( state_dict=state_dict, save_directory=save_directory, is_main_process=is_main_process, weight_name=weight_name, save_function=save_function, safe_serialization=safe_serialization, ) def fuse_lora( self, components: List[str] = ["transformer", "text_encoder", "text_encoder_2"], lora_scale: float = 1.0, safe_fusing: bool = False, adapter_names: Optional[List[str]] = None, **kwargs, ): r""" Fuses the LoRA parameters into the original parameters of the corresponding blocks. This is an experimental API. Args: components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. lora_scale (`float`, defaults to 1.0): Controls how much to influence the outputs with the LoRA parameters. safe_fusing (`bool`, defaults to `False`): Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. adapter_names (`List[str]`, *optional*): Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. Example: ```py from diffusers import DiffusionPipeline import torch pipeline = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 ).to("cuda") pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") pipeline.fuse_lora(lora_scale=0.7) ``` """ super().fuse_lora( components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names ) def unfuse_lora(self, components: List[str] = ["transformer", "text_encoder", "text_encoder_2"], **kwargs): r""" Reverses the effect of [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora). This is an experimental API. Args: components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from. unfuse_unet (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters. unfuse_text_encoder (`bool`, defaults to `True`): Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the LoRA parameters then it won't have any effect. """ super().unfuse_lora(components=components) class FluxLoraLoaderMixin(LoraBaseMixin): r""" Load LoRA layers into [`FluxTransformer2DModel`], [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel). Specific to [`StableDiffusion3Pipeline`]. """ _lora_loadable_modules = ["transformer", "text_encoder"] transformer_name = TRANSFORMER_NAME text_encoder_name = TEXT_ENCODER_NAME _control_lora_supported_norm_keys = ["norm_q", "norm_k", "norm_added_q", "norm_added_k"] @classmethod @validate_hf_hub_args def lora_state_dict( cls, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], return_alphas: bool = False, **kwargs, ): r""" Return state dict for lora weights and the network alphas. We support loading A1111 formatted LoRA checkpoints in a limited capacity. This function is experimental and might change in the future. Parameters: pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): Can be either: - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on the Hub. - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved with [`ModelMixin.save_pretrained`]. - A [torch state dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). cache_dir (`Union[str, os.PathLike]`, *optional*): Path to a directory where a downloaded pretrained model configuration is cached if the standard cache is not used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. local_files_only (`bool`, *optional*, defaults to `False`): Whether to only load local model weights and configuration files or not. If set to `True`, the model won't be downloaded from the Hub. token (`str` or *bool*, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from `diffusers-cli login` (stored in `~/.huggingface`) is used. revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier allowed by Git. subfolder (`str`, *optional*, defaults to `""`): The subfolder location of a model file within a larger model repository on the Hub or locally. """ # Load the main state dict first which has the LoRA layers for either of # transformer and text encoder or both. cache_dir = kwargs.pop("cache_dir", None) force_download = kwargs.pop("force_download", False) proxies = kwargs.pop("proxies", None) local_files_only = kwargs.pop("local_files_only", None) token = kwargs.pop("token", None) revision = kwargs.pop("revision", None) subfolder = kwargs.pop("subfolder", None) weight_name = kwargs.pop("weight_name", None) use_safetensors = kwargs.pop("use_safetensors", None) allow_pickle = False if use_safetensors is None: use_safetensors = True allow_pickle = True user_agent = { "file_type": "attn_procs_weights", "framework": "pytorch", } state_dict = _fetch_state_dict( pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict, weight_name=weight_name, use_safetensors=use_safetensors, local_files_only=local_files_only, cache_dir=cache_dir, force_download=force_download, proxies=proxies, token=token, revision=revision, subfolder=subfolder, user_agent=user_agent, allow_pickle=allow_pickle, ) is_dora_scale_present = any("dora_scale" in k for k in state_dict) if is_dora_scale_present: warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new." logger.warning(warn_msg) state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k} # TODO (sayakpaul): to a follow-up to clean and try to unify the conditions. is_kohya = any(".lora_down.weight" in k for k in state_dict) if is_kohya: state_dict = _convert_kohya_flux_lora_to_diffusers(state_dict) # Kohya already takes care of scaling the LoRA parameters with alpha. return (state_dict, None) if return_alphas else state_dict is_xlabs = any("processor" in k for k in state_dict) if is_xlabs: state_dict = _convert_xlabs_flux_lora_to_diffusers(state_dict) # xlabs doesn't use `alpha`. return (state_dict, None) if return_alphas else state_dict is_bfl_control = any("query_norm.scale" in k for k in state_dict) if is_bfl_control: state_dict = _convert_bfl_flux_control_lora_to_diffusers(state_dict) return (state_dict, None) if return_alphas else state_dict # For state dicts like # https://huggingface.co/TheLastBen/Jon_Snow_Flux_LoRA keys = list(state_dict.keys()) network_alphas = {} for k in keys: if "alpha" in k: alpha_value = state_dict.get(k) if (torch.is_tensor(alpha_value) and torch.is_floating_point(alpha_value)) or isinstance( alpha_value, float ): network_alphas[k] = state_dict.pop(k) else: raise ValueError( f"The alpha key ({k}) seems to be incorrect. If you think this error is unexpected, please open as issue." ) if return_alphas: return state_dict, network_alphas else: return state_dict def load_lora_weights( self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs ): """ Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded. See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state dict is loaded into `self.transformer`. Parameters: pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. kwargs (`dict`, *optional*): See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. adapter_name (`str`, *optional*): Adapter name to be used for referencing the loaded adapter model. If not specified, it will use `default_{i}` where i is the total number of adapters being loaded. low_cpu_mem_usage (`bool`, *optional*): `Speed up model loading by only loading the pretrained LoRA weights and not initializing the random weights. """ if not USE_PEFT_BACKEND: raise ValueError("PEFT backend is required for this method.") low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA) if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"): raise ValueError( "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." ) # if a dict is passed, copy it instead of modifying it inplace if isinstance(pretrained_model_name_or_path_or_dict, dict): pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy() # First, ensure that the checkpoint is a compatible one and can be successfully loaded. state_dict, network_alphas = self.lora_state_dict( pretrained_model_name_or_path_or_dict, return_alphas=True, **kwargs ) has_lora_keys = any("lora" in key for key in state_dict.keys()) # Flux Control LoRAs also have norm keys has_norm_keys = any( norm_key in key for key in state_dict.keys() for norm_key in self._control_lora_supported_norm_keys ) if not (has_lora_keys or has_norm_keys): raise ValueError("Invalid LoRA checkpoint.") transformer_lora_state_dict = { k: state_dict.pop(k) for k in list(state_dict.keys()) if "transformer." in k and "lora" in k } transformer_norm_state_dict = { k: state_dict.pop(k) for k in list(state_dict.keys()) if "transformer." in k and any(norm_key in k for norm_key in self._control_lora_supported_norm_keys) } transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer has_param_with_expanded_shape = self._maybe_expand_transformer_param_shape_or_error_( transformer, transformer_lora_state_dict, transformer_norm_state_dict ) if has_param_with_expanded_shape: logger.info( "The LoRA weights contain parameters that have different shapes that expected by the transformer. " "As a result, the state_dict of the transformer has been expanded to match the LoRA parameter shapes. " "To get a comprehensive list of parameter names that were modified, enable debug logging." ) transformer_lora_state_dict = self._maybe_expand_lora_state_dict( transformer=transformer, lora_state_dict=transformer_lora_state_dict ) if len(transformer_lora_state_dict) > 0: self.load_lora_into_transformer( transformer_lora_state_dict, network_alphas=network_alphas, transformer=transformer, adapter_name=adapter_name, _pipeline=self, low_cpu_mem_usage=low_cpu_mem_usage, ) if len(transformer_norm_state_dict) > 0: transformer._transformer_norm_layers = self._load_norm_into_transformer( transformer_norm_state_dict, transformer=transformer, discard_original_layers=False, ) text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k} if len(text_encoder_state_dict) > 0: self.load_lora_into_text_encoder( text_encoder_state_dict, network_alphas=network_alphas, text_encoder=self.text_encoder, prefix="text_encoder", lora_scale=self.lora_scale, adapter_name=adapter_name, _pipeline=self, low_cpu_mem_usage=low_cpu_mem_usage, ) @classmethod def load_lora_into_transformer( cls, state_dict, network_alphas, transformer, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False ): """ This will load the LoRA layers specified in `state_dict` into `transformer`. Parameters: state_dict (`dict`): A standard state dict containing the lora layer parameters. The keys can either be indexed directly into the unet or prefixed with an additional `unet` which can be used to distinguish between text encoder lora layers. network_alphas (`Dict[str, float]`): The value of the network alpha used for stable learning and preventing underflow. This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning). transformer (`FluxTransformer2DModel`): The Transformer model to load the LoRA layers into. adapter_name (`str`, *optional*): Adapter name to be used for referencing the loaded adapter model. If not specified, it will use `default_{i}` where i is the total number of adapters being loaded. low_cpu_mem_usage (`bool`, *optional*): Speed up model loading by only loading the pretrained LoRA weights and not initializing the random weights. """ if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"): raise ValueError( "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." ) # Load the layers corresponding to transformer. keys = list(state_dict.keys()) transformer_present = any(key.startswith(cls.transformer_name) for key in keys) if transformer_present: logger.info(f"Loading {cls.transformer_name}.") transformer.load_lora_adapter( state_dict, network_alphas=network_alphas, adapter_name=adapter_name, _pipeline=_pipeline, low_cpu_mem_usage=low_cpu_mem_usage, ) @classmethod def _load_norm_into_transformer( cls, state_dict, transformer, prefix=None, discard_original_layers=False, ) -> Dict[str, torch.Tensor]: # Remove prefix if present prefix = prefix or cls.transformer_name for key in list(state_dict.keys()): if key.split(".")[0] == prefix: state_dict[key[len(f"{prefix}.") :]] = state_dict.pop(key) # Find invalid keys transformer_state_dict = transformer.state_dict() transformer_keys = set(transformer_state_dict.keys()) state_dict_keys = set(state_dict.keys()) extra_keys = list(state_dict_keys - transformer_keys) if extra_keys: logger.warning( f"Unsupported keys found in state dict when trying to load normalization layers into the transformer. The following keys will be ignored:\n{extra_keys}." ) for key in extra_keys: state_dict.pop(key) # Save the layers that are going to be overwritten so that unload_lora_weights can work as expected overwritten_layers_state_dict = {} if not discard_original_layers: for key in state_dict.keys(): overwritten_layers_state_dict[key] = transformer_state_dict[key].clone() logger.info( "The provided state dict contains normalization layers in addition to LoRA layers. The normalization layers will directly update the state_dict of the transformer " 'as opposed to the LoRA layers that will co-exist separately until the "fuse_lora()" method is called. That is to say, the normalization layers will always be directly ' "fused into the transformer and can only be unfused if `discard_original_layers=True` is passed. This might also have implications when dealing with multiple LoRAs. " "If you notice something unexpected, please open an issue: https://github.com/huggingface/diffusers/issues." ) # We can't load with strict=True because the current state_dict does not contain all the transformer keys incompatible_keys = transformer.load_state_dict(state_dict, strict=False) unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None) # We shouldn't expect to see the supported norm keys here being present in the unexpected keys. if unexpected_keys: if any(norm_key in k for k in unexpected_keys for norm_key in cls._control_lora_supported_norm_keys): raise ValueError( f"Found {unexpected_keys} as unexpected keys while trying to load norm layers into the transformer." ) return overwritten_layers_state_dict @classmethod # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder def load_lora_into_text_encoder( cls, state_dict, network_alphas, text_encoder, prefix=None, lora_scale=1.0, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False, ): """ This will load the LoRA layers specified in `state_dict` into `text_encoder` Parameters: state_dict (`dict`): A standard state dict containing the lora layer parameters. The key should be prefixed with an additional `text_encoder` to distinguish between unet lora layers. network_alphas (`Dict[str, float]`): The value of the network alpha used for stable learning and preventing underflow. This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning). text_encoder (`CLIPTextModel`): The text encoder model to load the LoRA layers into. prefix (`str`): Expected prefix of the `text_encoder` in the `state_dict`. lora_scale (`float`): How much to scale the output of the lora linear layer before it is added with the output of the regular lora layer. adapter_name (`str`, *optional*): Adapter name to be used for referencing the loaded adapter model. If not specified, it will use `default_{i}` where i is the total number of adapters being loaded. low_cpu_mem_usage (`bool`, *optional*): Speed up model loading by only loading the pretrained LoRA weights and not initializing the random weights. """ _load_lora_into_text_encoder( state_dict=state_dict, network_alphas=network_alphas, lora_scale=lora_scale, text_encoder=text_encoder, prefix=prefix, text_encoder_name=cls.text_encoder_name, adapter_name=adapter_name, _pipeline=_pipeline, low_cpu_mem_usage=low_cpu_mem_usage, ) @classmethod # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.save_lora_weights with unet->transformer def save_lora_weights( cls, save_directory: Union[str, os.PathLike], transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, text_encoder_lora_layers: Dict[str, torch.nn.Module] = None, is_main_process: bool = True, weight_name: str = None, save_function: Callable = None, safe_serialization: bool = True, ): r""" Save the LoRA parameters corresponding to the UNet and text encoder. Arguments: save_directory (`str` or `os.PathLike`): Directory to save LoRA parameters to. Will be created if it doesn't exist. transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): State dict of the LoRA layers corresponding to the `transformer`. text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text encoder LoRA state dict because it comes from 🤗 Transformers. is_main_process (`bool`, *optional*, defaults to `True`): Whether the process calling this is the main process or not. Useful during distributed training and you need to call this function on all processes. In this case, set `is_main_process=True` only on the main process to avoid race conditions. save_function (`Callable`): The function to use to save the state dictionary. Useful during distributed training when you need to replace `torch.save` with another method. Can be configured with the environment variable `DIFFUSERS_SAVE_MODE`. safe_serialization (`bool`, *optional*, defaults to `True`): Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`. """ state_dict = {} if not (transformer_lora_layers or text_encoder_lora_layers): raise ValueError("You must pass at least one of `transformer_lora_layers` and `text_encoder_lora_layers`.") if transformer_lora_layers: state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name)) if text_encoder_lora_layers: state_dict.update(cls.pack_weights(text_encoder_lora_layers, cls.text_encoder_name)) # Save the model cls.write_lora_layers( state_dict=state_dict, save_directory=save_directory, is_main_process=is_main_process, weight_name=weight_name, save_function=save_function, safe_serialization=safe_serialization, ) def fuse_lora( self, components: List[str] = ["transformer"], lora_scale: float = 1.0, safe_fusing: bool = False, adapter_names: Optional[List[str]] = None, **kwargs, ): r""" Fuses the LoRA parameters into the original parameters of the corresponding blocks. This is an experimental API. Args: components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. lora_scale (`float`, defaults to 1.0): Controls how much to influence the outputs with the LoRA parameters. safe_fusing (`bool`, defaults to `False`): Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. adapter_names (`List[str]`, *optional*): Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. Example: ```py from diffusers import DiffusionPipeline import torch pipeline = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 ).to("cuda") pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") pipeline.fuse_lora(lora_scale=0.7) ``` """ transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer if ( hasattr(transformer, "_transformer_norm_layers") and isinstance(transformer._transformer_norm_layers, dict) and len(transformer._transformer_norm_layers.keys()) > 0 ): logger.info( "The provided state dict contains normalization layers in addition to LoRA layers. The normalization layers will be directly updated the state_dict of the transformer " "as opposed to the LoRA layers that will co-exist separately until the 'fuse_lora()' method is called. That is to say, the normalization layers will always be directly " "fused into the transformer and can only be unfused if `discard_original_layers=True` is passed." ) super().fuse_lora( components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names ) def unfuse_lora(self, components: List[str] = ["transformer", "text_encoder"], **kwargs): r""" Reverses the effect of [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora). This is an experimental API. Args: components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from. """ transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer if hasattr(transformer, "_transformer_norm_layers") and transformer._transformer_norm_layers: transformer.load_state_dict(transformer._transformer_norm_layers, strict=False) super().unfuse_lora(components=components) # We override this here account for `_transformer_norm_layers` and `_overwritten_params`. def unload_lora_weights(self, reset_to_overwritten_params=False): """ Unloads the LoRA parameters. Args: reset_to_overwritten_params (`bool`, defaults to `False`): Whether to reset the LoRA-loaded modules to their original params. Refer to the [Flux documentation](https://huggingface.co/docs/diffusers/main/en/api/pipelines/flux) to learn more. Examples: ```python >>> # Assuming `pipeline` is already loaded with the LoRA parameters. >>> pipeline.unload_lora_weights() >>> ... ``` """ super().unload_lora_weights() transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer if hasattr(transformer, "_transformer_norm_layers") and transformer._transformer_norm_layers: transformer.load_state_dict(transformer._transformer_norm_layers, strict=False) transformer._transformer_norm_layers = None if reset_to_overwritten_params and getattr(transformer, "_overwritten_params", None) is not None: overwritten_params = transformer._overwritten_params module_names = set() for param_name in overwritten_params: if param_name.endswith(".weight"): module_names.add(param_name.replace(".weight", "")) for name, module in transformer.named_modules(): if isinstance(module, torch.nn.Linear) and name in module_names: module_weight = module.weight.data module_bias = module.bias.data if module.bias is not None else None bias = module_bias is not None parent_module_name, _, current_module_name = name.rpartition(".") parent_module = transformer.get_submodule(parent_module_name) current_param_weight = overwritten_params[f"{name}.weight"] in_features, out_features = current_param_weight.shape[1], current_param_weight.shape[0] with torch.device("meta"): original_module = torch.nn.Linear( in_features, out_features, bias=bias, dtype=module_weight.dtype, ) tmp_state_dict = {"weight": current_param_weight} if module_bias is not None: tmp_state_dict.update({"bias": overwritten_params[f"{name}.bias"]}) original_module.load_state_dict(tmp_state_dict, assign=True, strict=True) setattr(parent_module, current_module_name, original_module) del tmp_state_dict if current_module_name in _MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX: attribute_name = _MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX[current_module_name] new_value = int(current_param_weight.shape[1]) old_value = getattr(transformer.config, attribute_name) setattr(transformer.config, attribute_name, new_value) logger.info( f"Set the {attribute_name} attribute of the model to {new_value} from {old_value}." ) @classmethod def _maybe_expand_transformer_param_shape_or_error_( cls, transformer: torch.nn.Module, lora_state_dict=None, norm_state_dict=None, prefix=None, ) -> bool: """ Control LoRA expands the shape of the input layer from (3072, 64) to (3072, 128). This method handles that and generalizes things a bit so that any parameter that needs expansion receives appropriate treatement. """ state_dict = {} if lora_state_dict is not None: state_dict.update(lora_state_dict) if norm_state_dict is not None: state_dict.update(norm_state_dict) # Remove prefix if present prefix = prefix or cls.transformer_name for key in list(state_dict.keys()): if key.split(".")[0] == prefix: state_dict[key[len(f"{prefix}.") :]] = state_dict.pop(key) # Expand transformer parameter shapes if they don't match lora has_param_with_shape_update = False overwritten_params = {} is_peft_loaded = getattr(transformer, "peft_config", None) is not None for name, module in transformer.named_modules(): if isinstance(module, torch.nn.Linear): module_weight = module.weight.data module_bias = module.bias.data if module.bias is not None else None bias = module_bias is not None lora_base_name = name.replace(".base_layer", "") if is_peft_loaded else name lora_A_weight_name = f"{lora_base_name}.lora_A.weight" lora_B_weight_name = f"{lora_base_name}.lora_B.weight" if lora_A_weight_name not in state_dict: continue in_features = state_dict[lora_A_weight_name].shape[1] out_features = state_dict[lora_B_weight_name].shape[0] # Model maybe loaded with different quantization schemes which may flatten the params. # `bitsandbytes`, for example, flatten the weights when using 4bit. 8bit bnb models # preserve weight shape. module_weight_shape = cls._calculate_module_shape(model=transformer, base_module=module) # This means there's no need for an expansion in the params, so we simply skip. if tuple(module_weight_shape) == (out_features, in_features): continue # TODO (sayakpaul): We still need to consider if the module we're expanding is # quantized and handle it accordingly if that is the case. module_out_features, module_in_features = module_weight.shape debug_message = "" if in_features > module_in_features: debug_message += ( f'Expanding the nn.Linear input/output features for module="{name}" because the provided LoRA ' f"checkpoint contains higher number of features than expected. The number of input_features will be " f"expanded from {module_in_features} to {in_features}" ) if out_features > module_out_features: debug_message += ( ", and the number of output features will be " f"expanded from {module_out_features} to {out_features}." ) else: debug_message += "." if debug_message: logger.debug(debug_message) if out_features > module_out_features or in_features > module_in_features: has_param_with_shape_update = True parent_module_name, _, current_module_name = name.rpartition(".") parent_module = transformer.get_submodule(parent_module_name) with torch.device("meta"): expanded_module = torch.nn.Linear( in_features, out_features, bias=bias, dtype=module_weight.dtype ) # Only weights are expanded and biases are not. This is because only the input dimensions # are changed while the output dimensions remain the same. The shape of the weight tensor # is (out_features, in_features), while the shape of bias tensor is (out_features,), which # explains the reason why only weights are expanded. new_weight = torch.zeros_like( expanded_module.weight.data, device=module_weight.device, dtype=module_weight.dtype ) slices = tuple(slice(0, dim) for dim in module_weight.shape) new_weight[slices] = module_weight tmp_state_dict = {"weight": new_weight} if module_bias is not None: tmp_state_dict["bias"] = module_bias expanded_module.load_state_dict(tmp_state_dict, strict=True, assign=True) setattr(parent_module, current_module_name, expanded_module) del tmp_state_dict if current_module_name in _MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX: attribute_name = _MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX[current_module_name] new_value = int(expanded_module.weight.data.shape[1]) old_value = getattr(transformer.config, attribute_name) setattr(transformer.config, attribute_name, new_value) logger.info( f"Set the {attribute_name} attribute of the model to {new_value} from {old_value}." ) # For `unload_lora_weights()`. # TODO: this could lead to more memory overhead if the number of overwritten params # are large. Should be revisited later and tackled through a `discard_original_layers` arg. overwritten_params[f"{current_module_name}.weight"] = module_weight if module_bias is not None: overwritten_params[f"{current_module_name}.bias"] = module_bias if len(overwritten_params) > 0: transformer._overwritten_params = overwritten_params return has_param_with_shape_update @classmethod def _maybe_expand_lora_state_dict(cls, transformer, lora_state_dict): expanded_module_names = set() transformer_state_dict = transformer.state_dict() prefix = f"{cls.transformer_name}." lora_module_names = [ key[: -len(".lora_A.weight")] for key in lora_state_dict if key.endswith(".lora_A.weight") ] lora_module_names = [name[len(prefix) :] for name in lora_module_names if name.startswith(prefix)] lora_module_names = sorted(set(lora_module_names)) transformer_module_names = sorted({name for name, _ in transformer.named_modules()}) unexpected_modules = set(lora_module_names) - set(transformer_module_names) if unexpected_modules: logger.debug(f"Found unexpected modules: {unexpected_modules}. These will be ignored.") is_peft_loaded = getattr(transformer, "peft_config", None) is not None for k in lora_module_names: if k in unexpected_modules: continue base_param_name = ( f"{k.replace(prefix, '')}.base_layer.weight" if is_peft_loaded and f"{k.replace(prefix, '')}.base_layer.weight" in transformer_state_dict else f"{k.replace(prefix, '')}.weight" ) base_weight_param = transformer_state_dict[base_param_name] lora_A_param = lora_state_dict[f"{prefix}{k}.lora_A.weight"] # TODO (sayakpaul): Handle the cases when we actually need to expand when using quantization. base_module_shape = cls._calculate_module_shape(model=transformer, base_weight_param_name=base_param_name) if base_module_shape[1] > lora_A_param.shape[1]: shape = (lora_A_param.shape[0], base_weight_param.shape[1]) expanded_state_dict_weight = torch.zeros(shape, device=base_weight_param.device) expanded_state_dict_weight[:, : lora_A_param.shape[1]].copy_(lora_A_param) lora_state_dict[f"{prefix}{k}.lora_A.weight"] = expanded_state_dict_weight expanded_module_names.add(k) elif base_module_shape[1] < lora_A_param.shape[1]: raise NotImplementedError( f"This LoRA param ({k}.lora_A.weight) has an incompatible shape {lora_A_param.shape}. Please open an issue to file for a feature request - https://github.com/huggingface/diffusers/issues/new." ) if expanded_module_names: logger.info( f"The following LoRA modules were zero padded to match the state dict of {cls.transformer_name}: {expanded_module_names}. Please open an issue if you think this was unexpected - https://github.com/huggingface/diffusers/issues/new." ) return lora_state_dict @staticmethod def _calculate_module_shape( model: "torch.nn.Module", base_module: "torch.nn.Linear" = None, base_weight_param_name: str = None, ) -> "torch.Size": def _get_weight_shape(weight: torch.Tensor): return weight.quant_state.shape if weight.__class__.__name__ == "Params4bit" else weight.shape if base_module is not None: return _get_weight_shape(base_module.weight) elif base_weight_param_name is not None: if not base_weight_param_name.endswith(".weight"): raise ValueError( f"Invalid `base_weight_param_name` passed as it does not end with '.weight' {base_weight_param_name=}." ) module_path = base_weight_param_name.rsplit(".weight", 1)[0] submodule = get_submodule_by_name(model, module_path) return _get_weight_shape(submodule.weight) raise ValueError("Either `base_module` or `base_weight_param_name` must be provided.") # The reason why we subclass from `StableDiffusionLoraLoaderMixin` here is because Amused initially # relied on `StableDiffusionLoraLoaderMixin` for its LoRA support. class AmusedLoraLoaderMixin(StableDiffusionLoraLoaderMixin): _lora_loadable_modules = ["transformer", "text_encoder"] transformer_name = TRANSFORMER_NAME text_encoder_name = TEXT_ENCODER_NAME @classmethod # Copied from diffusers.loaders.lora_pipeline.FluxLoraLoaderMixin.load_lora_into_transformer with FluxTransformer2DModel->UVit2DModel def load_lora_into_transformer( cls, state_dict, network_alphas, transformer, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False ): """ This will load the LoRA layers specified in `state_dict` into `transformer`. Parameters: state_dict (`dict`): A standard state dict containing the lora layer parameters. The keys can either be indexed directly into the unet or prefixed with an additional `unet` which can be used to distinguish between text encoder lora layers. network_alphas (`Dict[str, float]`): The value of the network alpha used for stable learning and preventing underflow. This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning). transformer (`UVit2DModel`): The Transformer model to load the LoRA layers into. adapter_name (`str`, *optional*): Adapter name to be used for referencing the loaded adapter model. If not specified, it will use `default_{i}` where i is the total number of adapters being loaded. low_cpu_mem_usage (`bool`, *optional*): Speed up model loading by only loading the pretrained LoRA weights and not initializing the random weights. """ if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"): raise ValueError( "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." ) # Load the layers corresponding to transformer. keys = list(state_dict.keys()) transformer_present = any(key.startswith(cls.transformer_name) for key in keys) if transformer_present: logger.info(f"Loading {cls.transformer_name}.") transformer.load_lora_adapter( state_dict, network_alphas=network_alphas, adapter_name=adapter_name, _pipeline=_pipeline, low_cpu_mem_usage=low_cpu_mem_usage, ) @classmethod # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder def load_lora_into_text_encoder( cls, state_dict, network_alphas, text_encoder, prefix=None, lora_scale=1.0, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False, ): """ This will load the LoRA layers specified in `state_dict` into `text_encoder` Parameters: state_dict (`dict`): A standard state dict containing the lora layer parameters. The key should be prefixed with an additional `text_encoder` to distinguish between unet lora layers. network_alphas (`Dict[str, float]`): The value of the network alpha used for stable learning and preventing underflow. This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning). text_encoder (`CLIPTextModel`): The text encoder model to load the LoRA layers into. prefix (`str`): Expected prefix of the `text_encoder` in the `state_dict`. lora_scale (`float`): How much to scale the output of the lora linear layer before it is added with the output of the regular lora layer. adapter_name (`str`, *optional*): Adapter name to be used for referencing the loaded adapter model. If not specified, it will use `default_{i}` where i is the total number of adapters being loaded. low_cpu_mem_usage (`bool`, *optional*): Speed up model loading by only loading the pretrained LoRA weights and not initializing the random weights. """ _load_lora_into_text_encoder( state_dict=state_dict, network_alphas=network_alphas, lora_scale=lora_scale, text_encoder=text_encoder, prefix=prefix, text_encoder_name=cls.text_encoder_name, adapter_name=adapter_name, _pipeline=_pipeline, low_cpu_mem_usage=low_cpu_mem_usage, ) @classmethod def save_lora_weights( cls, save_directory: Union[str, os.PathLike], text_encoder_lora_layers: Dict[str, torch.nn.Module] = None, transformer_lora_layers: Dict[str, torch.nn.Module] = None, is_main_process: bool = True, weight_name: str = None, save_function: Callable = None, safe_serialization: bool = True, ): r""" Save the LoRA parameters corresponding to the UNet and text encoder. Arguments: save_directory (`str` or `os.PathLike`): Directory to save LoRA parameters to. Will be created if it doesn't exist. unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): State dict of the LoRA layers corresponding to the `unet`. text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text encoder LoRA state dict because it comes from 🤗 Transformers. is_main_process (`bool`, *optional*, defaults to `True`): Whether the process calling this is the main process or not. Useful during distributed training and you need to call this function on all processes. In this case, set `is_main_process=True` only on the main process to avoid race conditions. save_function (`Callable`): The function to use to save the state dictionary. Useful during distributed training when you need to replace `torch.save` with another method. Can be configured with the environment variable `DIFFUSERS_SAVE_MODE`. safe_serialization (`bool`, *optional*, defaults to `True`): Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`. """ state_dict = {} if not (transformer_lora_layers or text_encoder_lora_layers): raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.") if transformer_lora_layers: state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name)) if text_encoder_lora_layers: state_dict.update(cls.pack_weights(text_encoder_lora_layers, cls.text_encoder_name)) # Save the model cls.write_lora_layers( state_dict=state_dict, save_directory=save_directory, is_main_process=is_main_process, weight_name=weight_name, save_function=save_function, safe_serialization=safe_serialization, ) class CogVideoXLoraLoaderMixin(LoraBaseMixin): r""" Load LoRA layers into [`CogVideoXTransformer3DModel`]. Specific to [`CogVideoXPipeline`]. """ _lora_loadable_modules = ["transformer"] transformer_name = TRANSFORMER_NAME @classmethod @validate_hf_hub_args # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.lora_state_dict def lora_state_dict( cls, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs, ): r""" Return state dict for lora weights and the network alphas. We support loading A1111 formatted LoRA checkpoints in a limited capacity. This function is experimental and might change in the future. Parameters: pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): Can be either: - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on the Hub. - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved with [`ModelMixin.save_pretrained`]. - A [torch state dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). cache_dir (`Union[str, os.PathLike]`, *optional*): Path to a directory where a downloaded pretrained model configuration is cached if the standard cache is not used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. local_files_only (`bool`, *optional*, defaults to `False`): Whether to only load local model weights and configuration files or not. If set to `True`, the model won't be downloaded from the Hub. token (`str` or *bool*, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from `diffusers-cli login` (stored in `~/.huggingface`) is used. revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier allowed by Git. subfolder (`str`, *optional*, defaults to `""`): The subfolder location of a model file within a larger model repository on the Hub or locally. """ # Load the main state dict first which has the LoRA layers for either of # transformer and text encoder or both. cache_dir = kwargs.pop("cache_dir", None) force_download = kwargs.pop("force_download", False) proxies = kwargs.pop("proxies", None) local_files_only = kwargs.pop("local_files_only", None) token = kwargs.pop("token", None) revision = kwargs.pop("revision", None) subfolder = kwargs.pop("subfolder", None) weight_name = kwargs.pop("weight_name", None) use_safetensors = kwargs.pop("use_safetensors", None) allow_pickle = False if use_safetensors is None: use_safetensors = True allow_pickle = True user_agent = { "file_type": "attn_procs_weights", "framework": "pytorch", } state_dict = _fetch_state_dict( pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict, weight_name=weight_name, use_safetensors=use_safetensors, local_files_only=local_files_only, cache_dir=cache_dir, force_download=force_download, proxies=proxies, token=token, revision=revision, subfolder=subfolder, user_agent=user_agent, allow_pickle=allow_pickle, ) is_dora_scale_present = any("dora_scale" in k for k in state_dict) if is_dora_scale_present: warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new." logger.warning(warn_msg) state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k} return state_dict def load_lora_weights( self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs ): """ Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded. See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state dict is loaded into `self.transformer`. Parameters: pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. adapter_name (`str`, *optional*): Adapter name to be used for referencing the loaded adapter model. If not specified, it will use `default_{i}` where i is the total number of adapters being loaded. low_cpu_mem_usage (`bool`, *optional*): Speed up model loading by only loading the pretrained LoRA weights and not initializing the random weights. kwargs (`dict`, *optional*): See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. """ if not USE_PEFT_BACKEND: raise ValueError("PEFT backend is required for this method.") low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA) if low_cpu_mem_usage and is_peft_version("<", "0.13.0"): raise ValueError( "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." ) # if a dict is passed, copy it instead of modifying it inplace if isinstance(pretrained_model_name_or_path_or_dict, dict): pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy() # First, ensure that the checkpoint is a compatible one and can be successfully loaded. state_dict = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs) is_correct_format = all("lora" in key for key in state_dict.keys()) if not is_correct_format: raise ValueError("Invalid LoRA checkpoint.") self.load_lora_into_transformer( state_dict, transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer, adapter_name=adapter_name, _pipeline=self, low_cpu_mem_usage=low_cpu_mem_usage, ) @classmethod # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->CogVideoXTransformer3DModel def load_lora_into_transformer( cls, state_dict, transformer, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False ): """ This will load the LoRA layers specified in `state_dict` into `transformer`. Parameters: state_dict (`dict`): A standard state dict containing the lora layer parameters. The keys can either be indexed directly into the unet or prefixed with an additional `unet` which can be used to distinguish between text encoder lora layers. transformer (`CogVideoXTransformer3DModel`): The Transformer model to load the LoRA layers into. adapter_name (`str`, *optional*): Adapter name to be used for referencing the loaded adapter model. If not specified, it will use `default_{i}` where i is the total number of adapters being loaded. low_cpu_mem_usage (`bool`, *optional*): Speed up model loading by only loading the pretrained LoRA weights and not initializing the random weights. """ if low_cpu_mem_usage and is_peft_version("<", "0.13.0"): raise ValueError( "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." ) # Load the layers corresponding to transformer. logger.info(f"Loading {cls.transformer_name}.") transformer.load_lora_adapter( state_dict, network_alphas=None, adapter_name=adapter_name, _pipeline=_pipeline, low_cpu_mem_usage=low_cpu_mem_usage, ) @classmethod # Adapted from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.save_lora_weights without support for text encoder def save_lora_weights( cls, save_directory: Union[str, os.PathLike], transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, is_main_process: bool = True, weight_name: str = None, save_function: Callable = None, safe_serialization: bool = True, ): r""" Save the LoRA parameters corresponding to the UNet and text encoder. Arguments: save_directory (`str` or `os.PathLike`): Directory to save LoRA parameters to. Will be created if it doesn't exist. transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): State dict of the LoRA layers corresponding to the `transformer`. is_main_process (`bool`, *optional*, defaults to `True`): Whether the process calling this is the main process or not. Useful during distributed training and you need to call this function on all processes. In this case, set `is_main_process=True` only on the main process to avoid race conditions. save_function (`Callable`): The function to use to save the state dictionary. Useful during distributed training when you need to replace `torch.save` with another method. Can be configured with the environment variable `DIFFUSERS_SAVE_MODE`. safe_serialization (`bool`, *optional*, defaults to `True`): Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`. """ state_dict = {} if not transformer_lora_layers: raise ValueError("You must pass `transformer_lora_layers`.") if transformer_lora_layers: state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name)) # Save the model cls.write_lora_layers( state_dict=state_dict, save_directory=save_directory, is_main_process=is_main_process, weight_name=weight_name, save_function=save_function, safe_serialization=safe_serialization, ) def fuse_lora( self, components: List[str] = ["transformer"], lora_scale: float = 1.0, safe_fusing: bool = False, adapter_names: Optional[List[str]] = None, **kwargs, ): r""" Fuses the LoRA parameters into the original parameters of the corresponding blocks. This is an experimental API. Args: components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. lora_scale (`float`, defaults to 1.0): Controls how much to influence the outputs with the LoRA parameters. safe_fusing (`bool`, defaults to `False`): Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. adapter_names (`List[str]`, *optional*): Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. Example: ```py from diffusers import DiffusionPipeline import torch pipeline = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 ).to("cuda") pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") pipeline.fuse_lora(lora_scale=0.7) ``` """ super().fuse_lora( components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names ) def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs): r""" Reverses the effect of [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora). This is an experimental API. Args: components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from. unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters. """ super().unfuse_lora(components=components) class Mochi1LoraLoaderMixin(LoraBaseMixin): r""" Load LoRA layers into [`MochiTransformer3DModel`]. Specific to [`MochiPipeline`]. """ _lora_loadable_modules = ["transformer"] transformer_name = TRANSFORMER_NAME @classmethod @validate_hf_hub_args # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.lora_state_dict def lora_state_dict( cls, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs, ): r""" Return state dict for lora weights and the network alphas. We support loading A1111 formatted LoRA checkpoints in a limited capacity. This function is experimental and might change in the future. Parameters: pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): Can be either: - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on the Hub. - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved with [`ModelMixin.save_pretrained`]. - A [torch state dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). cache_dir (`Union[str, os.PathLike]`, *optional*): Path to a directory where a downloaded pretrained model configuration is cached if the standard cache is not used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. local_files_only (`bool`, *optional*, defaults to `False`): Whether to only load local model weights and configuration files or not. If set to `True`, the model won't be downloaded from the Hub. token (`str` or *bool*, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from `diffusers-cli login` (stored in `~/.huggingface`) is used. revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier allowed by Git. subfolder (`str`, *optional*, defaults to `""`): The subfolder location of a model file within a larger model repository on the Hub or locally. """ # Load the main state dict first which has the LoRA layers for either of # transformer and text encoder or both. cache_dir = kwargs.pop("cache_dir", None) force_download = kwargs.pop("force_download", False) proxies = kwargs.pop("proxies", None) local_files_only = kwargs.pop("local_files_only", None) token = kwargs.pop("token", None) revision = kwargs.pop("revision", None) subfolder = kwargs.pop("subfolder", None) weight_name = kwargs.pop("weight_name", None) use_safetensors = kwargs.pop("use_safetensors", None) allow_pickle = False if use_safetensors is None: use_safetensors = True allow_pickle = True user_agent = { "file_type": "attn_procs_weights", "framework": "pytorch", } state_dict = _fetch_state_dict( pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict, weight_name=weight_name, use_safetensors=use_safetensors, local_files_only=local_files_only, cache_dir=cache_dir, force_download=force_download, proxies=proxies, token=token, revision=revision, subfolder=subfolder, user_agent=user_agent, allow_pickle=allow_pickle, ) is_dora_scale_present = any("dora_scale" in k for k in state_dict) if is_dora_scale_present: warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new." logger.warning(warn_msg) state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k} return state_dict # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights def load_lora_weights( self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs ): """ Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded. See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state dict is loaded into `self.transformer`. Parameters: pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. adapter_name (`str`, *optional*): Adapter name to be used for referencing the loaded adapter model. If not specified, it will use `default_{i}` where i is the total number of adapters being loaded. low_cpu_mem_usage (`bool`, *optional*): Speed up model loading by only loading the pretrained LoRA weights and not initializing the random weights. kwargs (`dict`, *optional*): See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. """ if not USE_PEFT_BACKEND: raise ValueError("PEFT backend is required for this method.") low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA) if low_cpu_mem_usage and is_peft_version("<", "0.13.0"): raise ValueError( "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." ) # if a dict is passed, copy it instead of modifying it inplace if isinstance(pretrained_model_name_or_path_or_dict, dict): pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy() # First, ensure that the checkpoint is a compatible one and can be successfully loaded. state_dict = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs) is_correct_format = all("lora" in key for key in state_dict.keys()) if not is_correct_format: raise ValueError("Invalid LoRA checkpoint.") self.load_lora_into_transformer( state_dict, transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer, adapter_name=adapter_name, _pipeline=self, low_cpu_mem_usage=low_cpu_mem_usage, ) @classmethod # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->MochiTransformer3DModel def load_lora_into_transformer( cls, state_dict, transformer, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False ): """ This will load the LoRA layers specified in `state_dict` into `transformer`. Parameters: state_dict (`dict`): A standard state dict containing the lora layer parameters. The keys can either be indexed directly into the unet or prefixed with an additional `unet` which can be used to distinguish between text encoder lora layers. transformer (`MochiTransformer3DModel`): The Transformer model to load the LoRA layers into. adapter_name (`str`, *optional*): Adapter name to be used for referencing the loaded adapter model. If not specified, it will use `default_{i}` where i is the total number of adapters being loaded. low_cpu_mem_usage (`bool`, *optional*): Speed up model loading by only loading the pretrained LoRA weights and not initializing the random weights. """ if low_cpu_mem_usage and is_peft_version("<", "0.13.0"): raise ValueError( "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." ) # Load the layers corresponding to transformer. logger.info(f"Loading {cls.transformer_name}.") transformer.load_lora_adapter( state_dict, network_alphas=None, adapter_name=adapter_name, _pipeline=_pipeline, low_cpu_mem_usage=low_cpu_mem_usage, ) @classmethod # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights def save_lora_weights( cls, save_directory: Union[str, os.PathLike], transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, is_main_process: bool = True, weight_name: str = None, save_function: Callable = None, safe_serialization: bool = True, ): r""" Save the LoRA parameters corresponding to the UNet and text encoder. Arguments: save_directory (`str` or `os.PathLike`): Directory to save LoRA parameters to. Will be created if it doesn't exist. transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): State dict of the LoRA layers corresponding to the `transformer`. is_main_process (`bool`, *optional*, defaults to `True`): Whether the process calling this is the main process or not. Useful during distributed training and you need to call this function on all processes. In this case, set `is_main_process=True` only on the main process to avoid race conditions. save_function (`Callable`): The function to use to save the state dictionary. Useful during distributed training when you need to replace `torch.save` with another method. Can be configured with the environment variable `DIFFUSERS_SAVE_MODE`. safe_serialization (`bool`, *optional*, defaults to `True`): Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`. """ state_dict = {} if not transformer_lora_layers: raise ValueError("You must pass `transformer_lora_layers`.") if transformer_lora_layers: state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name)) # Save the model cls.write_lora_layers( state_dict=state_dict, save_directory=save_directory, is_main_process=is_main_process, weight_name=weight_name, save_function=save_function, safe_serialization=safe_serialization, ) def fuse_lora( self, components: List[str] = ["transformer"], lora_scale: float = 1.0, safe_fusing: bool = False, adapter_names: Optional[List[str]] = None, **kwargs, ): r""" Fuses the LoRA parameters into the original parameters of the corresponding blocks. This is an experimental API. Args: components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. lora_scale (`float`, defaults to 1.0): Controls how much to influence the outputs with the LoRA parameters. safe_fusing (`bool`, defaults to `False`): Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. adapter_names (`List[str]`, *optional*): Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. Example: ```py from diffusers import DiffusionPipeline import torch pipeline = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 ).to("cuda") pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") pipeline.fuse_lora(lora_scale=0.7) ``` """ super().fuse_lora( components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names ) def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs): r""" Reverses the effect of [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora). This is an experimental API. Args: components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from. unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters. """ super().unfuse_lora(components=components) class LTXVideoLoraLoaderMixin(LoraBaseMixin): r""" Load LoRA layers into [`LTXVideoTransformer3DModel`]. Specific to [`LTXPipeline`]. """ _lora_loadable_modules = ["transformer"] transformer_name = TRANSFORMER_NAME @classmethod @validate_hf_hub_args # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.lora_state_dict def lora_state_dict( cls, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs, ): r""" Return state dict for lora weights and the network alphas. We support loading A1111 formatted LoRA checkpoints in a limited capacity. This function is experimental and might change in the future. Parameters: pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): Can be either: - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on the Hub. - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved with [`ModelMixin.save_pretrained`]. - A [torch state dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). cache_dir (`Union[str, os.PathLike]`, *optional*): Path to a directory where a downloaded pretrained model configuration is cached if the standard cache is not used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. local_files_only (`bool`, *optional*, defaults to `False`): Whether to only load local model weights and configuration files or not. If set to `True`, the model won't be downloaded from the Hub. token (`str` or *bool*, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from `diffusers-cli login` (stored in `~/.huggingface`) is used. revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier allowed by Git. subfolder (`str`, *optional*, defaults to `""`): The subfolder location of a model file within a larger model repository on the Hub or locally. """ # Load the main state dict first which has the LoRA layers for either of # transformer and text encoder or both. cache_dir = kwargs.pop("cache_dir", None) force_download = kwargs.pop("force_download", False) proxies = kwargs.pop("proxies", None) local_files_only = kwargs.pop("local_files_only", None) token = kwargs.pop("token", None) revision = kwargs.pop("revision", None) subfolder = kwargs.pop("subfolder", None) weight_name = kwargs.pop("weight_name", None) use_safetensors = kwargs.pop("use_safetensors", None) allow_pickle = False if use_safetensors is None: use_safetensors = True allow_pickle = True user_agent = { "file_type": "attn_procs_weights", "framework": "pytorch", } state_dict = _fetch_state_dict( pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict, weight_name=weight_name, use_safetensors=use_safetensors, local_files_only=local_files_only, cache_dir=cache_dir, force_download=force_download, proxies=proxies, token=token, revision=revision, subfolder=subfolder, user_agent=user_agent, allow_pickle=allow_pickle, ) is_dora_scale_present = any("dora_scale" in k for k in state_dict) if is_dora_scale_present: warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new." logger.warning(warn_msg) state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k} return state_dict # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights def load_lora_weights( self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs ): """ Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded. See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state dict is loaded into `self.transformer`. Parameters: pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. adapter_name (`str`, *optional*): Adapter name to be used for referencing the loaded adapter model. If not specified, it will use `default_{i}` where i is the total number of adapters being loaded. low_cpu_mem_usage (`bool`, *optional*): Speed up model loading by only loading the pretrained LoRA weights and not initializing the random weights. kwargs (`dict`, *optional*): See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. """ if not USE_PEFT_BACKEND: raise ValueError("PEFT backend is required for this method.") low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA) if low_cpu_mem_usage and is_peft_version("<", "0.13.0"): raise ValueError( "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." ) # if a dict is passed, copy it instead of modifying it inplace if isinstance(pretrained_model_name_or_path_or_dict, dict): pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy() # First, ensure that the checkpoint is a compatible one and can be successfully loaded. state_dict = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs) is_correct_format = all("lora" in key for key in state_dict.keys()) if not is_correct_format: raise ValueError("Invalid LoRA checkpoint.") self.load_lora_into_transformer( state_dict, transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer, adapter_name=adapter_name, _pipeline=self, low_cpu_mem_usage=low_cpu_mem_usage, ) @classmethod # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->LTXVideoTransformer3DModel def load_lora_into_transformer( cls, state_dict, transformer, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False ): """ This will load the LoRA layers specified in `state_dict` into `transformer`. Parameters: state_dict (`dict`): A standard state dict containing the lora layer parameters. The keys can either be indexed directly into the unet or prefixed with an additional `unet` which can be used to distinguish between text encoder lora layers. transformer (`LTXVideoTransformer3DModel`): The Transformer model to load the LoRA layers into. adapter_name (`str`, *optional*): Adapter name to be used for referencing the loaded adapter model. If not specified, it will use `default_{i}` where i is the total number of adapters being loaded. low_cpu_mem_usage (`bool`, *optional*): Speed up model loading by only loading the pretrained LoRA weights and not initializing the random weights. """ if low_cpu_mem_usage and is_peft_version("<", "0.13.0"): raise ValueError( "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." ) # Load the layers corresponding to transformer. logger.info(f"Loading {cls.transformer_name}.") transformer.load_lora_adapter( state_dict, network_alphas=None, adapter_name=adapter_name, _pipeline=_pipeline, low_cpu_mem_usage=low_cpu_mem_usage, ) @classmethod # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights def save_lora_weights( cls, save_directory: Union[str, os.PathLike], transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, is_main_process: bool = True, weight_name: str = None, save_function: Callable = None, safe_serialization: bool = True, ): r""" Save the LoRA parameters corresponding to the UNet and text encoder. Arguments: save_directory (`str` or `os.PathLike`): Directory to save LoRA parameters to. Will be created if it doesn't exist. transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): State dict of the LoRA layers corresponding to the `transformer`. is_main_process (`bool`, *optional*, defaults to `True`): Whether the process calling this is the main process or not. Useful during distributed training and you need to call this function on all processes. In this case, set `is_main_process=True` only on the main process to avoid race conditions. save_function (`Callable`): The function to use to save the state dictionary. Useful during distributed training when you need to replace `torch.save` with another method. Can be configured with the environment variable `DIFFUSERS_SAVE_MODE`. safe_serialization (`bool`, *optional*, defaults to `True`): Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`. """ state_dict = {} if not transformer_lora_layers: raise ValueError("You must pass `transformer_lora_layers`.") if transformer_lora_layers: state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name)) # Save the model cls.write_lora_layers( state_dict=state_dict, save_directory=save_directory, is_main_process=is_main_process, weight_name=weight_name, save_function=save_function, safe_serialization=safe_serialization, ) def fuse_lora( self, components: List[str] = ["transformer"], lora_scale: float = 1.0, safe_fusing: bool = False, adapter_names: Optional[List[str]] = None, **kwargs, ): r""" Fuses the LoRA parameters into the original parameters of the corresponding blocks. This is an experimental API. Args: components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. lora_scale (`float`, defaults to 1.0): Controls how much to influence the outputs with the LoRA parameters. safe_fusing (`bool`, defaults to `False`): Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. adapter_names (`List[str]`, *optional*): Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. Example: ```py from diffusers import DiffusionPipeline import torch pipeline = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 ).to("cuda") pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") pipeline.fuse_lora(lora_scale=0.7) ``` """ super().fuse_lora( components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names ) def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs): r""" Reverses the effect of [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora). This is an experimental API. Args: components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from. unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters. """ super().unfuse_lora(components=components) class SanaLoraLoaderMixin(LoraBaseMixin): r""" Load LoRA layers into [`SanaTransformer2DModel`]. Specific to [`SanaPipeline`]. """ _lora_loadable_modules = ["transformer"] transformer_name = TRANSFORMER_NAME @classmethod @validate_hf_hub_args # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.lora_state_dict def lora_state_dict( cls, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs, ): r""" Return state dict for lora weights and the network alphas. We support loading A1111 formatted LoRA checkpoints in a limited capacity. This function is experimental and might change in the future. Parameters: pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): Can be either: - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on the Hub. - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved with [`ModelMixin.save_pretrained`]. - A [torch state dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). cache_dir (`Union[str, os.PathLike]`, *optional*): Path to a directory where a downloaded pretrained model configuration is cached if the standard cache is not used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. local_files_only (`bool`, *optional*, defaults to `False`): Whether to only load local model weights and configuration files or not. If set to `True`, the model won't be downloaded from the Hub. token (`str` or *bool*, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from `diffusers-cli login` (stored in `~/.huggingface`) is used. revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier allowed by Git. subfolder (`str`, *optional*, defaults to `""`): The subfolder location of a model file within a larger model repository on the Hub or locally. """ # Load the main state dict first which has the LoRA layers for either of # transformer and text encoder or both. cache_dir = kwargs.pop("cache_dir", None) force_download = kwargs.pop("force_download", False) proxies = kwargs.pop("proxies", None) local_files_only = kwargs.pop("local_files_only", None) token = kwargs.pop("token", None) revision = kwargs.pop("revision", None) subfolder = kwargs.pop("subfolder", None) weight_name = kwargs.pop("weight_name", None) use_safetensors = kwargs.pop("use_safetensors", None) allow_pickle = False if use_safetensors is None: use_safetensors = True allow_pickle = True user_agent = { "file_type": "attn_procs_weights", "framework": "pytorch", } state_dict = _fetch_state_dict( pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict, weight_name=weight_name, use_safetensors=use_safetensors, local_files_only=local_files_only, cache_dir=cache_dir, force_download=force_download, proxies=proxies, token=token, revision=revision, subfolder=subfolder, user_agent=user_agent, allow_pickle=allow_pickle, ) is_dora_scale_present = any("dora_scale" in k for k in state_dict) if is_dora_scale_present: warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new." logger.warning(warn_msg) state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k} return state_dict # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights def load_lora_weights( self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs ): """ Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded. See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state dict is loaded into `self.transformer`. Parameters: pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. adapter_name (`str`, *optional*): Adapter name to be used for referencing the loaded adapter model. If not specified, it will use `default_{i}` where i is the total number of adapters being loaded. low_cpu_mem_usage (`bool`, *optional*): Speed up model loading by only loading the pretrained LoRA weights and not initializing the random weights. kwargs (`dict`, *optional*): See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. """ if not USE_PEFT_BACKEND: raise ValueError("PEFT backend is required for this method.") low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA) if low_cpu_mem_usage and is_peft_version("<", "0.13.0"): raise ValueError( "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." ) # if a dict is passed, copy it instead of modifying it inplace if isinstance(pretrained_model_name_or_path_or_dict, dict): pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy() # First, ensure that the checkpoint is a compatible one and can be successfully loaded. state_dict = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs) is_correct_format = all("lora" in key for key in state_dict.keys()) if not is_correct_format: raise ValueError("Invalid LoRA checkpoint.") self.load_lora_into_transformer( state_dict, transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer, adapter_name=adapter_name, _pipeline=self, low_cpu_mem_usage=low_cpu_mem_usage, ) @classmethod # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->SanaTransformer2DModel def load_lora_into_transformer( cls, state_dict, transformer, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False ): """ This will load the LoRA layers specified in `state_dict` into `transformer`. Parameters: state_dict (`dict`): A standard state dict containing the lora layer parameters. The keys can either be indexed directly into the unet or prefixed with an additional `unet` which can be used to distinguish between text encoder lora layers. transformer (`SanaTransformer2DModel`): The Transformer model to load the LoRA layers into. adapter_name (`str`, *optional*): Adapter name to be used for referencing the loaded adapter model. If not specified, it will use `default_{i}` where i is the total number of adapters being loaded. low_cpu_mem_usage (`bool`, *optional*): Speed up model loading by only loading the pretrained LoRA weights and not initializing the random weights. """ if low_cpu_mem_usage and is_peft_version("<", "0.13.0"): raise ValueError( "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." ) # Load the layers corresponding to transformer. logger.info(f"Loading {cls.transformer_name}.") transformer.load_lora_adapter( state_dict, network_alphas=None, adapter_name=adapter_name, _pipeline=_pipeline, low_cpu_mem_usage=low_cpu_mem_usage, ) @classmethod # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights def save_lora_weights( cls, save_directory: Union[str, os.PathLike], transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, is_main_process: bool = True, weight_name: str = None, save_function: Callable = None, safe_serialization: bool = True, ): r""" Save the LoRA parameters corresponding to the UNet and text encoder. Arguments: save_directory (`str` or `os.PathLike`): Directory to save LoRA parameters to. Will be created if it doesn't exist. transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): State dict of the LoRA layers corresponding to the `transformer`. is_main_process (`bool`, *optional*, defaults to `True`): Whether the process calling this is the main process or not. Useful during distributed training and you need to call this function on all processes. In this case, set `is_main_process=True` only on the main process to avoid race conditions. save_function (`Callable`): The function to use to save the state dictionary. Useful during distributed training when you need to replace `torch.save` with another method. Can be configured with the environment variable `DIFFUSERS_SAVE_MODE`. safe_serialization (`bool`, *optional*, defaults to `True`): Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`. """ state_dict = {} if not transformer_lora_layers: raise ValueError("You must pass `transformer_lora_layers`.") if transformer_lora_layers: state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name)) # Save the model cls.write_lora_layers( state_dict=state_dict, save_directory=save_directory, is_main_process=is_main_process, weight_name=weight_name, save_function=save_function, safe_serialization=safe_serialization, ) def fuse_lora( self, components: List[str] = ["transformer"], lora_scale: float = 1.0, safe_fusing: bool = False, adapter_names: Optional[List[str]] = None, **kwargs, ): r""" Fuses the LoRA parameters into the original parameters of the corresponding blocks. This is an experimental API. Args: components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. lora_scale (`float`, defaults to 1.0): Controls how much to influence the outputs with the LoRA parameters. safe_fusing (`bool`, defaults to `False`): Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. adapter_names (`List[str]`, *optional*): Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. Example: ```py from diffusers import DiffusionPipeline import torch pipeline = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 ).to("cuda") pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") pipeline.fuse_lora(lora_scale=0.7) ``` """ super().fuse_lora( components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names ) def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs): r""" Reverses the effect of [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora). This is an experimental API. Args: components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from. unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters. """ super().unfuse_lora(components=components) class HunyuanVideoLoraLoaderMixin(LoraBaseMixin): r""" Load LoRA layers into [`HunyuanVideoTransformer3DModel`]. Specific to [`HunyuanVideoPipeline`]. """ _lora_loadable_modules = ["transformer"] transformer_name = TRANSFORMER_NAME @classmethod @validate_hf_hub_args def lora_state_dict( cls, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs, ): r""" Return state dict for lora weights and the network alphas. We support loading original format HunyuanVideo LoRA checkpoints. This function is experimental and might change in the future. Parameters: pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): Can be either: - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on the Hub. - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved with [`ModelMixin.save_pretrained`]. - A [torch state dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). cache_dir (`Union[str, os.PathLike]`, *optional*): Path to a directory where a downloaded pretrained model configuration is cached if the standard cache is not used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. local_files_only (`bool`, *optional*, defaults to `False`): Whether to only load local model weights and configuration files or not. If set to `True`, the model won't be downloaded from the Hub. token (`str` or *bool*, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from `diffusers-cli login` (stored in `~/.huggingface`) is used. revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier allowed by Git. subfolder (`str`, *optional*, defaults to `""`): The subfolder location of a model file within a larger model repository on the Hub or locally. """ # Load the main state dict first which has the LoRA layers for either of # transformer and text encoder or both. cache_dir = kwargs.pop("cache_dir", None) force_download = kwargs.pop("force_download", False) proxies = kwargs.pop("proxies", None) local_files_only = kwargs.pop("local_files_only", None) token = kwargs.pop("token", None) revision = kwargs.pop("revision", None) subfolder = kwargs.pop("subfolder", None) weight_name = kwargs.pop("weight_name", None) use_safetensors = kwargs.pop("use_safetensors", None) allow_pickle = False if use_safetensors is None: use_safetensors = True allow_pickle = True user_agent = { "file_type": "attn_procs_weights", "framework": "pytorch", } state_dict = _fetch_state_dict( pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict, weight_name=weight_name, use_safetensors=use_safetensors, local_files_only=local_files_only, cache_dir=cache_dir, force_download=force_download, proxies=proxies, token=token, revision=revision, subfolder=subfolder, user_agent=user_agent, allow_pickle=allow_pickle, ) is_dora_scale_present = any("dora_scale" in k for k in state_dict) if is_dora_scale_present: warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new." logger.warning(warn_msg) state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k} is_original_hunyuan_video = any("img_attn_qkv" in k for k in state_dict) if is_original_hunyuan_video: state_dict = _convert_hunyuan_video_lora_to_diffusers(state_dict) return state_dict # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights def load_lora_weights( self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs ): """ Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded. See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state dict is loaded into `self.transformer`. Parameters: pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. adapter_name (`str`, *optional*): Adapter name to be used for referencing the loaded adapter model. If not specified, it will use `default_{i}` where i is the total number of adapters being loaded. low_cpu_mem_usage (`bool`, *optional*): Speed up model loading by only loading the pretrained LoRA weights and not initializing the random weights. kwargs (`dict`, *optional*): See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. """ if not USE_PEFT_BACKEND: raise ValueError("PEFT backend is required for this method.") low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA) if low_cpu_mem_usage and is_peft_version("<", "0.13.0"): raise ValueError( "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." ) # if a dict is passed, copy it instead of modifying it inplace if isinstance(pretrained_model_name_or_path_or_dict, dict): pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy() # First, ensure that the checkpoint is a compatible one and can be successfully loaded. state_dict = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs) is_correct_format = all("lora" in key for key in state_dict.keys()) if not is_correct_format: raise ValueError("Invalid LoRA checkpoint.") self.load_lora_into_transformer( state_dict, transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer, adapter_name=adapter_name, _pipeline=self, low_cpu_mem_usage=low_cpu_mem_usage, ) @classmethod # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->HunyuanVideoTransformer3DModel def load_lora_into_transformer( cls, state_dict, transformer, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False ): """ This will load the LoRA layers specified in `state_dict` into `transformer`. Parameters: state_dict (`dict`): A standard state dict containing the lora layer parameters. The keys can either be indexed directly into the unet or prefixed with an additional `unet` which can be used to distinguish between text encoder lora layers. transformer (`HunyuanVideoTransformer3DModel`): The Transformer model to load the LoRA layers into. adapter_name (`str`, *optional*): Adapter name to be used for referencing the loaded adapter model. If not specified, it will use `default_{i}` where i is the total number of adapters being loaded. low_cpu_mem_usage (`bool`, *optional*): Speed up model loading by only loading the pretrained LoRA weights and not initializing the random weights. """ if low_cpu_mem_usage and is_peft_version("<", "0.13.0"): raise ValueError( "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." ) # Load the layers corresponding to transformer. logger.info(f"Loading {cls.transformer_name}.") transformer.load_lora_adapter( state_dict, network_alphas=None, adapter_name=adapter_name, _pipeline=_pipeline, low_cpu_mem_usage=low_cpu_mem_usage, ) @classmethod # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights def save_lora_weights( cls, save_directory: Union[str, os.PathLike], transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, is_main_process: bool = True, weight_name: str = None, save_function: Callable = None, safe_serialization: bool = True, ): r""" Save the LoRA parameters corresponding to the UNet and text encoder. Arguments: save_directory (`str` or `os.PathLike`): Directory to save LoRA parameters to. Will be created if it doesn't exist. transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): State dict of the LoRA layers corresponding to the `transformer`. is_main_process (`bool`, *optional*, defaults to `True`): Whether the process calling this is the main process or not. Useful during distributed training and you need to call this function on all processes. In this case, set `is_main_process=True` only on the main process to avoid race conditions. save_function (`Callable`): The function to use to save the state dictionary. Useful during distributed training when you need to replace `torch.save` with another method. Can be configured with the environment variable `DIFFUSERS_SAVE_MODE`. safe_serialization (`bool`, *optional*, defaults to `True`): Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`. """ state_dict = {} if not transformer_lora_layers: raise ValueError("You must pass `transformer_lora_layers`.") if transformer_lora_layers: state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name)) # Save the model cls.write_lora_layers( state_dict=state_dict, save_directory=save_directory, is_main_process=is_main_process, weight_name=weight_name, save_function=save_function, safe_serialization=safe_serialization, ) def fuse_lora( self, components: List[str] = ["transformer"], lora_scale: float = 1.0, safe_fusing: bool = False, adapter_names: Optional[List[str]] = None, **kwargs, ): r""" Fuses the LoRA parameters into the original parameters of the corresponding blocks. This is an experimental API. Args: components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. lora_scale (`float`, defaults to 1.0): Controls how much to influence the outputs with the LoRA parameters. safe_fusing (`bool`, defaults to `False`): Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. adapter_names (`List[str]`, *optional*): Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. Example: ```py from diffusers import DiffusionPipeline import torch pipeline = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 ).to("cuda") pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") pipeline.fuse_lora(lora_scale=0.7) ``` """ super().fuse_lora( components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names ) def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs): r""" Reverses the effect of [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora). This is an experimental API. Args: components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from. unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters. """ super().unfuse_lora(components=components) class LoraLoaderMixin(StableDiffusionLoraLoaderMixin): def __init__(self, *args, **kwargs): deprecation_message = "LoraLoaderMixin is deprecated and this will be removed in a future version. Please use `StableDiffusionLoraLoaderMixin`, instead." deprecate("LoraLoaderMixin", "1.0.0", deprecation_message) super().__init__(*args, **kwargs)