from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union from ..base import DiffusersQuantizer if TYPE_CHECKING: from ...models.modeling_utils import ModelMixin from ...utils import ( get_module_from_name, is_accelerate_available, is_accelerate_version, is_gguf_available, is_gguf_version, is_torch_available, logging, ) if is_torch_available() and is_gguf_available(): import torch from .utils import ( GGML_QUANT_SIZES, GGUFParameter, _dequantize_gguf_and_restore_linear, _quant_shape_from_byte_shape, _replace_with_gguf_linear, ) logger = logging.get_logger(__name__) class GGUFQuantizer(DiffusersQuantizer): use_keep_in_fp32_modules = True def __init__(self, quantization_config, **kwargs): super().__init__(quantization_config, **kwargs) self.compute_dtype = quantization_config.compute_dtype self.pre_quantized = quantization_config.pre_quantized self.modules_to_not_convert = quantization_config.modules_to_not_convert if not isinstance(self.modules_to_not_convert, list): self.modules_to_not_convert = [self.modules_to_not_convert] def validate_environment(self, *args, **kwargs): if not is_accelerate_available() or is_accelerate_version("<", "0.26.0"): raise ImportError( "Loading GGUF Parameters requires `accelerate` installed in your enviroment: `pip install 'accelerate>=0.26.0'`" ) if not is_gguf_available() or is_gguf_version("<", "0.10.0"): raise ImportError( "To load GGUF format files you must have `gguf` installed in your environment: `pip install gguf>=0.10.0`" ) # Copied from diffusers.quantizers.bitsandbytes.bnb_quantizer.BnB4BitDiffusersQuantizer.adjust_max_memory def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]: # need more space for buffers that are created during quantization max_memory = {key: val * 0.90 for key, val in max_memory.items()} return max_memory def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype": if target_dtype != torch.uint8: logger.info(f"target_dtype {target_dtype} is replaced by `torch.uint8` for GGUF quantization") return torch.uint8 def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": if torch_dtype is None: torch_dtype = self.compute_dtype return torch_dtype def check_quantized_param_shape(self, param_name, current_param, loaded_param): loaded_param_shape = loaded_param.shape current_param_shape = current_param.shape quant_type = loaded_param.quant_type block_size, type_size = GGML_QUANT_SIZES[quant_type] inferred_shape = _quant_shape_from_byte_shape(loaded_param_shape, type_size, block_size) if inferred_shape != current_param_shape: raise ValueError( f"{param_name} has an expected quantized shape of: {inferred_shape}, but receieved shape: {loaded_param_shape}" ) return True def check_if_quantized_param( self, model: "ModelMixin", param_value: Union["GGUFParameter", "torch.Tensor"], param_name: str, state_dict: Dict[str, Any], **kwargs, ) -> bool: if isinstance(param_value, GGUFParameter): return True return False def create_quantized_param( self, model: "ModelMixin", param_value: Union["GGUFParameter", "torch.Tensor"], param_name: str, target_device: "torch.device", state_dict: Optional[Dict[str, Any]] = None, unexpected_keys: Optional[List[str]] = None, ): module, tensor_name = get_module_from_name(model, param_name) if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f"{module} does not have a parameter or a buffer named {tensor_name}.") if tensor_name in module._parameters: module._parameters[tensor_name] = param_value.to(target_device) if tensor_name in module._buffers: module._buffers[tensor_name] = param_value.to(target_device) def _process_model_before_weight_loading( self, model: "ModelMixin", device_map, keep_in_fp32_modules: List[str] = [], **kwargs, ): state_dict = kwargs.get("state_dict", None) self.modules_to_not_convert.extend(keep_in_fp32_modules) self.modules_to_not_convert = [module for module in self.modules_to_not_convert if module is not None] _replace_with_gguf_linear( model, self.compute_dtype, state_dict, modules_to_not_convert=self.modules_to_not_convert ) def _process_model_after_weight_loading(self, model: "ModelMixin", **kwargs): return model @property def is_serializable(self): return False @property def is_trainable(self) -> bool: return False def _dequantize(self, model): is_model_on_cpu = model.device.type == "cpu" if is_model_on_cpu: logger.info( "Model was found to be on CPU (could happen as a result of `enable_model_cpu_offload()`). So, moving it to GPU. After dequantization, will move the model back to CPU again to preserve the previous device." ) model.to(torch.cuda.current_device()) model = _dequantize_gguf_and_restore_linear(model, self.modules_to_not_convert) if is_model_on_cpu: model.to("cpu") return model