Spaces:
Sleeping
Sleeping
Create utils.py
Browse files
utils.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torchvision import transforms
|
3 |
+
from PIL import Image
|
4 |
+
from torchvision.models import resnet18
|
5 |
+
|
6 |
+
# Same as your original custom classifier
|
7 |
+
class ResNet18Classifier(torch.nn.Module):
|
8 |
+
def __init__(self, num_classes=3, pretrained=False):
|
9 |
+
super(ResNet18Classifier, self).__init__()
|
10 |
+
self.model = resnet18(pretrained=pretrained)
|
11 |
+
self.model.fc = torch.nn.Linear(self.model.fc.in_features, num_classes)
|
12 |
+
|
13 |
+
def forward(self, x):
|
14 |
+
return self.model(x)
|
15 |
+
|
16 |
+
def load_model(model_path="model/best_classification_model.pth", num_classes=3):
|
17 |
+
model = ResNet18Classifier(num_classes=num_classes, pretrained=False)
|
18 |
+
state_dict = torch.load(model_path, map_location='cpu')
|
19 |
+
model.load_state_dict(state_dict)
|
20 |
+
model.eval()
|
21 |
+
return model
|
22 |
+
|
23 |
+
def predict_image(image_path, model, class_names):
|
24 |
+
transform = transforms.Compose([
|
25 |
+
transforms.Resize((224, 224)),
|
26 |
+
transforms.ToTensor(),
|
27 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
28 |
+
std=[0.229, 0.224, 0.225])
|
29 |
+
])
|
30 |
+
image = Image.open(image_path).convert('RGB')
|
31 |
+
image_tensor = transform(image).unsqueeze(0)
|
32 |
+
|
33 |
+
with torch.no_grad():
|
34 |
+
outputs = model(image_tensor)
|
35 |
+
_, predicted = torch.max(outputs, 1)
|
36 |
+
|
37 |
+
return class_names[predicted.item()]
|