File size: 2,492 Bytes
d8eaf88 23e9852 61d09e6 10c55f7 61d09e6 fcda6f5 d8eaf88 fb6c0ad e32d51c d8eaf88 61d09e6 10c55f7 eac489d 6a7e68e 61d09e6 fb6c0ad 24dac97 fb6c0ad e32d51c db672cf 23e9852 cdcc96d cc6c676 98d2c0f cc6c676 cdcc96d 0a1c1a2 9e2cd5a fb6c0ad cc6c676 fb6c0ad 9e2cd5a fb6c0ad 23e9852 cdcc96d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
import os
import gradio as gr
import cv2
import torch
import urllib.request
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
def calculate_depth(model_type, img):
if not os.path.exists('temp'):
os.system('mkdir temp')
filename = "temp/image.jpg"
img.save(filename, "JPEG")
midas = torch.hub.load("intel-isl/MiDaS", model_type)
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
midas.to(device)
midas.eval()
midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms")
if model_type == "DPT_Large" or model_type == "DPT_Hybrid":
transform = midas_transforms.dpt_transform
else:
transform = midas_transforms.small_transform
img = cv2.imread(filename)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
input_batch = transform(img).to(device)
with torch.no_grad():
prediction = midas(input_batch)
prediction = torch.nn.functional.interpolate(
prediction.unsqueeze(1),
size=img.shape[:2],
mode="bicubic",
align_corners=False,
).squeeze()
output = prediction.cpu().numpy()
formatted = (output * 255 / np.max(output)).astype('uint8')
out_im = Image.fromarray(formatted)
out_im.save("temp/image_depth.jpeg", "JPEG")
return f'temp/image_depth.jpeg'
def wiggle_effect(slider):
return [f'temp/image_depth.jpeg',f'temp/image_depth.jpeg']
#pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu116
with gr.Blocks() as demo:
gr.Markdown("Start typing below and then click **Run** to see the output.")
## Depth Estimation
midas_models = ["DPT_Large","DPT_Hybrid","MiDaS_small"]
inp = [gr.inputs.Dropdown(midas_models, default="MiDaS_small", label="Depth estimation model type")]
with gr.Row():
inp.append(gr.Image(type="pil", label="Input"))
out = gr.Image(type="file", label="depth_estimation")
btn = gr.Button("Calculate depth")
btn.click(fn=calculate_depth, inputs=inp, outputs=out)
## Wigglegram
inp = [gr.Slider(1,15, default = 2, label='StepCycles',step= 1)]
with gr.Row():
out = [ gr.Image(type="file", label="Output_images"), #TODO change to gallery
gr.Image(type="file", label="Output_wiggle")]
btn = gr.Button("Generate Wigglegram")
btn.click(fn=wiggle_effect, inputs=inp, outputs=out)
demo.launch() |