WiggleGAN / app.py
Rodrigo_Cobo
fix jpeg error
fcda6f5
raw
history blame
1.82 kB
import os
import gradio as gr
import cv2
import torch
import urllib.request
import matplotlib.pyplot as plt
from PIL import Image
def update(slider, img):
if not os.path.exists('temp'):
os.system('mkdir temp')
filename = "temp/image.jpg"
img.save(filename, "JPEG")
model_type = "DPT_Hybrid"
midas = torch.hub.load("intel-isl/MiDaS", model_type)
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
midas.to(device)
midas.eval()
midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms")
if model_type == "DPT_Large" or model_type == "DPT_Hybrid":
transform = midas_transforms.dpt_transform
else:
transform = midas_transforms.small_transform
img = cv2.imread(filename)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
input_batch = transform(img).to(device)
with torch.no_grad():
prediction = midas(input_batch)
prediction = torch.nn.functional.interpolate(
prediction.unsqueeze(1),
size=img.shape[:2],
mode="bicubic",
align_corners=False,
).squeeze()
output = prediction.cpu().numpy()
#out_im = Image.fromarray(output)
#out_im.convert('RGB').save("temp/image_depth.jpeg", "JPEG")
#cv2.imwrite("temp/image_depth.jpeg", output)
plt.imsave('test.png', output)
return f'temp/image_depth.jpeg'
with gr.Blocks() as demo:
gr.Markdown("Start typing below and then click **Run** to see the output.")
inp = [gr.Slider(1,15, default = 2, label='StepCycles',step= 1)]
with gr.Row():
inp.append(gr.Image(type="pil", label="Input"))
out = gr.Image(type="file", label="Output")
btn = gr.Button("Run")
btn.click(fn=update, inputs=inp, outputs=out)
demo.launch()