Rodrigo_Cobo
commited on
Commit
·
4b2bdc6
1
Parent(s):
491b981
solution to multiple accesses
Browse files
app.py
CHANGED
@@ -8,7 +8,7 @@ import matplotlib.pyplot as plt
|
|
8 |
from PIL import Image
|
9 |
import subprocess
|
10 |
|
11 |
-
def calculate_depth(model_type, img):
|
12 |
|
13 |
if not os.path.exists('temp'):
|
14 |
os.system('mkdir temp')
|
@@ -51,10 +51,6 @@ def calculate_depth(model_type, img):
|
|
51 |
out_im = Image.fromarray(formatted)
|
52 |
out_im.save("Images/Input-Test/1_d.png", "PNG")
|
53 |
|
54 |
-
return out_im
|
55 |
-
|
56 |
-
def wiggle_effect(slider, gan_type):
|
57 |
-
|
58 |
dim = '256'
|
59 |
c_images = '1'
|
60 |
name_output = 'out'
|
@@ -66,31 +62,27 @@ def wiggle_effect(slider, gan_type):
|
|
66 |
])
|
67 |
subprocess.run(["python", "WiggleResults/split.py", "--dim", dim])
|
68 |
|
69 |
-
return [f'WiggleResults/'+ name_output + '.jpg',f'WiggleResults/' + name_output + '_0.gif']
|
70 |
|
71 |
|
72 |
with gr.Blocks() as demo:
|
73 |
gr.Markdown("Start typing below and then click **Run** to see the output.")
|
74 |
|
75 |
-
|
76 |
## Depth Estimation
|
77 |
midas_models = ["DPT_Large","DPT_Hybrid","MiDaS_small"]
|
|
|
|
|
78 |
inp = [gr.inputs.Dropdown(midas_models, default="MiDaS_small", label="Depth estimation model type")]
|
|
|
|
|
79 |
with gr.Row():
|
80 |
inp.append(gr.Image(type="pil", label="Input"))
|
81 |
-
out = gr.Image(type="pil", label="depth_estimation")
|
82 |
-
|
|
|
|
|
|
|
83 |
btn.click(fn=calculate_depth, inputs=inp, outputs=out)
|
84 |
|
85 |
|
86 |
-
## Wigglegram
|
87 |
-
gan_models = ["Cycle","Cycle(half)","noCycle","noCycle-noCr","noCycle-noCr-noL1","OnlyGen"]
|
88 |
-
inp = [gr.Slider(1,15, default = 2, label='StepCycles',step= 1)]
|
89 |
-
inp.append(gr.inputs.Dropdown(gan_models, default="Cycle", label="Different Gan trainings"))
|
90 |
-
with gr.Row():
|
91 |
-
out = [ gr.Image(type="file", label="Output_images"), #TODO change to gallery
|
92 |
-
gr.Image(type="file", label="Output_wiggle")]
|
93 |
-
btn = gr.Button("Generate Wigglegram")
|
94 |
-
btn.click(fn=wiggle_effect, inputs=inp, outputs=out)
|
95 |
-
|
96 |
demo.launch()
|
|
|
8 |
from PIL import Image
|
9 |
import subprocess
|
10 |
|
11 |
+
def calculate_depth(model_type, gan_type, slider, img):
|
12 |
|
13 |
if not os.path.exists('temp'):
|
14 |
os.system('mkdir temp')
|
|
|
51 |
out_im = Image.fromarray(formatted)
|
52 |
out_im.save("Images/Input-Test/1_d.png", "PNG")
|
53 |
|
|
|
|
|
|
|
|
|
54 |
dim = '256'
|
55 |
c_images = '1'
|
56 |
name_output = 'out'
|
|
|
62 |
])
|
63 |
subprocess.run(["python", "WiggleResults/split.py", "--dim", dim])
|
64 |
|
65 |
+
return [out_im, f'WiggleResults/'+ name_output + '.jpg',f'WiggleResults/' + name_output + '_0.gif']
|
66 |
|
67 |
|
68 |
with gr.Blocks() as demo:
|
69 |
gr.Markdown("Start typing below and then click **Run** to see the output.")
|
70 |
|
|
|
71 |
## Depth Estimation
|
72 |
midas_models = ["DPT_Large","DPT_Hybrid","MiDaS_small"]
|
73 |
+
gan_models = ["Cycle","Cycle(half)","noCycle","noCycle-noCr","noCycle-noCr-noL1","OnlyGen"]
|
74 |
+
|
75 |
inp = [gr.inputs.Dropdown(midas_models, default="MiDaS_small", label="Depth estimation model type")]
|
76 |
+
inp.append(gr.inputs.Dropdown(gan_models, default="Cycle", label="Different Gan trainings"))
|
77 |
+
inp.append(gr.Slider(1,15, default = 2, label='StepCycles',step= 1))
|
78 |
with gr.Row():
|
79 |
inp.append(gr.Image(type="pil", label="Input"))
|
80 |
+
out = [gr.Image(type="pil", label="depth_estimation")]
|
81 |
+
with gr.Row():
|
82 |
+
out.append(gr.Image(type="file", label="Output_images"))
|
83 |
+
out.append(gr.Image(type="file", label="Output_wiggle"))
|
84 |
+
btn = gr.Button("Calculate depth + wiggle")
|
85 |
btn.click(fn=calculate_depth, inputs=inp, outputs=out)
|
86 |
|
87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
demo.launch()
|