Spaces:
Paused
Paused
File size: 1,633 Bytes
f5eda19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
import cv2
import numpy as np
import PIL.Image
import torch
from controlnet_aux.util import HWC3, ade_palette
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
from cv_utils import resize_image
class ImageSegmentor:
def __init__(self):
self.image_processor = AutoImageProcessor.from_pretrained(
'openmmlab/upernet-convnext-small')
self.image_segmentor = UperNetForSemanticSegmentation.from_pretrained(
'openmmlab/upernet-convnext-small')
@torch.inference_mode()
def __call__(self, image: np.ndarray, **kwargs) -> PIL.Image.Image:
detect_resolution = kwargs.pop('detect_resolution', 512)
image_resolution = kwargs.pop('image_resolution', 512)
image = HWC3(image)
image = resize_image(image, resolution=detect_resolution)
image = PIL.Image.fromarray(image)
pixel_values = self.image_processor(image,
return_tensors='pt').pixel_values
outputs = self.image_segmentor(pixel_values)
seg = self.image_processor.post_process_semantic_segmentation(
outputs, target_sizes=[image.size[::-1]])[0]
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8)
for label, color in enumerate(ade_palette()):
color_seg[seg == label, :] = color
color_seg = color_seg.astype(np.uint8)
color_seg = resize_image(color_seg,
resolution=image_resolution,
interpolation=cv2.INTER_NEAREST)
return PIL.Image.fromarray(color_seg)
|