Spaces:
Sleeping
Sleeping
import streamlit as st | |
from PyPDF2 import PdfReader #library to read pdf files | |
from langchain.text_splitter import RecursiveCharacterTextSplitter#library to split pdf files | |
import os | |
from langchain_google_genai import GoogleGenerativeAIEmbeddings #to embed the text | |
import google.generativeai as genai | |
from langchain.vectorstores import FAISS #for vector embeddings | |
from langchain_google_genai import ChatGoogleGenerativeAI # | |
from langchain.chains.question_answering import load_qa_chain #to chain the prompts | |
from langchain.prompts import PromptTemplate #to create prompt templates | |
from dotenv import load_dotenv | |
load_dotenv() | |
genai.configure(api_key = os.getenv("AIzaSyDDGaplA8ya5n_sc4hkMY_vxpsRE6ZDMV8")) | |
def get_pdf_text(pdf_docs): | |
text = "" | |
# iterate over all pdf files uploaded | |
for pdf in pdf_docs: | |
pdf_reader = PdfReader(pdf) | |
# iterate over all pages in a pdf | |
for page in pdf_reader.pages: | |
text += page.extract_text() | |
return text | |
def get_text_chunks(text): | |
# create an object of RecursiveCharacterTextSplitter with specific chunk size and overlap size | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size = 10000, chunk_overlap = 1000) | |
# now split the text we have using object created | |
chunks = text_splitter.split_text(text) | |
return chunks | |
def get_vector_store(text_chunks): | |
embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001") # google embeddings | |
vector_store = FAISS.from_texts(text_chunks,embeddings) # use the embedding object on the splitted text of pdf docs | |
vector_store.save_local("faiss_index") # save the embeddings in local | |
def get_conversation_chain(): | |
# define the prompt | |
prompt_template = """ | |
Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in | |
provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n | |
Context:\n {context}?\n | |
Question: \n{question}\n | |
Answer: | |
""" | |
model = ChatGoogleGenerativeAI(model = "gemini-pro", temperatue = 0.3) # create object of gemini-pro | |
prompt = PromptTemplate(template = prompt_template, input_variables= ["context","question"]) | |
chain = load_qa_chain(model,chain_type="stuff",prompt = prompt) | |
return chain | |
def user_input(user_question): | |
# user_question is the input question | |
embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001") | |
# load the local faiss db | |
new_db = FAISS.load_local("faiss_index", embeddings) | |
# using similarity search, get the answer based on the input | |
docs = new_db.similarity_search(user_question) | |
chain = get_conversation_chain() | |
response = chain( | |
{"input_documents":docs, "question": user_question} | |
, return_only_outputs=True) | |
print(response) | |
st.write("Reply: ", response["output_text"]) | |
def main(): | |
st.set_page_config("Chat PDF") | |
st.header("Chat with PDF using Gemini") | |
user_question = st.text_input("Ask a Question:") | |
if user_question: | |
user_input(user_question) | |
with st.sidebar: | |
st.title("Menu:") | |
pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True) | |
if st.button("Submit & Process"): | |
with st.spinner("Processing..."): | |
raw_text = get_pdf_text(pdf_docs) | |
text_chunks = get_text_chunks(raw_text) | |
get_vector_store(text_chunks) | |
st.success("Done") | |
if __name__ == "__main__": | |
main() |