File size: 7,143 Bytes
f2b678e
 
3b45348
 
f960e54
3b45348
f960e54
3b45348
 
 
 
 
f2b678e
f960e54
3b45348
 
 
f2b678e
3b45348
f2b678e
 
 
 
 
c7734b6
3b45348
f2b678e
3b45348
 
 
 
 
 
 
 
 
f2b678e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71a36bf
 
f2b678e
 
71a36bf
 
 
f2b678e
71a36bf
f2b678e
 
71a36bf
 
 
f2b678e
71a36bf
 
 
 
 
 
 
f2b678e
71a36bf
 
 
 
f2b678e
 
71a36bf
 
f2b678e
71a36bf
 
f2b678e
 
71a36bf
f960e54
 
71a36bf
 
 
 
f2b678e
71a36bf
f2b678e
 
 
71a36bf
 
 
 
f960e54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import requests
from bs4 import BeautifulSoup
import pandas as pd
import folium
from folium.plugins import MarkerCluster, HeatMap
import plotly.graph_objects as go
import plotly.express as px
from geopy.geocoders import Nominatim
import re
import streamlit as st

# Streamlit title and description
st.title("米其林餐廳指南爬蟲")
st.write("Extract restaurant data, visualize with charts, and display locations on maps.")

# Read data from Google Sheets
sheet_id = "1xUfnD1WCF5ldqECI8YXIko1gCpaDDCwTztL17kjI42U"
df1 = pd.read_csv(f"https://docs.google.com/spreadsheets/d/{sheet_id}/export?format=csv")

# Convert "網址" column to a Python list
urls = df1["網址"].tolist()

# Create a DataFrame to store all restaurant data
df = pd.DataFrame(columns=["Store Name", "Address", "Phone", "Latitude", "Longitude", "Region"])

# Initialize Nominatim geocoder
geolocator = Nominatim(user_agent="my_app")

# Function to extract region (區域) from the address using regex
def extract_region(address):
    match = re.search(r'(.*?)區|縣|市', address)
    if match:
        return match.group(0)
    else:
        return "Unknown"

# Function to fetch and parse data
def fetch_data():
    global df
    # Progress bar in Streamlit
    progress_bar = st.progress(0)
    total_urls = len(urls)

    # Iterate through each URL
    for idx, url in enumerate(urls):
        response = requests.get(url)
        soup = BeautifulSoup(response.content, "html.parser")

        try:
            store_name = soup.find("h2", class_="restaurant-details__heading--title").text.strip()
        except AttributeError:
            store_name = None

        try:
            address = soup.find("li", class_="restaurant-details__heading--address").text.strip()
            region = extract_region(address)
        except AttributeError:
            address = None
            region = "Unknown"
        
        try:
            phone = soup.find("a", {"data-event": "CTA_tel"}).get("href").replace("tel:", "")
        except AttributeError:
            phone = None

        try:
            location = geolocator.geocode(address)
            if location:
                latitude = location.latitude
                longitude = location.longitude
            else:
                latitude = None
                longitude = None
        except:
            latitude = None
            longitude = None

        new_row = pd.DataFrame({
            "Store Name": [store_name],
            "Address": [address],
            "Phone": [phone],
            "Latitude": [latitude],
            "Longitude": [longitude],
            "Region": [region]
        })

        df = pd.concat([df, new_row], ignore_index=True)

        # Update progress bar
        progress_bar.progress((idx + 1) / total_urls)

# Button to trigger data fetching
if st.button("爬取餐廳資料"):
    fetch_data()
    
    # Save the DataFrame to CSV with UTF-8 encoding, including latitude and longitude
    csv_file = "restaurants_data.csv"
    df.to_csv(csv_file, encoding="utf-8-sig", index=False)

    # Display the DataFrame as a table at the top
    st.subheader("Restaurant Data")
    st.dataframe(df)

    # Display download button for the CSV
    st.download_button(
        label="Download restaurant data as CSV",
        data=open(csv_file, "rb").read(),
        file_name=csv_file,
        mime="text/csv"
    )

    # Group the data by region and sum the number of restaurants
    region_group = df.groupby("Region").size().reset_index(name='Count')

    # Plot enlarged pie chart with custom colors and labels
    pie_chart = go.Figure(go.Pie(
        labels=region_group["Region"],
        values=region_group["Count"],
        textinfo="label+percent",
        hoverinfo="label+value",
        textfont=dict(size=18),
        marker=dict(colors=px.colors.qualitative.Set3, line=dict(color='#000000', width=2))
    ))

    pie_chart.update_layout(
        title="Restaurant Distribution by Region",
        title_x=0.5,
        title_font=dict(size=24, family="Arial"),
        height=600,
        margin=dict(t=50, b=50, l=50, r=50)
    )
    st.subheader("Restaurant Distribution by Region (Enlarged Pie Chart)")
    st.plotly_chart(pie_chart)

    # Plot bar chart with custom colors and labels
    bar_chart = go.Figure(go.Bar(
        x=region_group["Region"],
        y=region_group["Count"],
        text=region_group["Count"],
        textposition='auto',
        marker=dict(color=px.colors.qualitative.Set2)
    ))

    bar_chart.update_layout(
        title="Restaurant Count by Region",
        title_x=0.5,
        title_font=dict(size=24, family="Arial"),
        height=400,
        margin=dict(t=50, b=50, l=50, r=50),
        xaxis_title="Region",
        yaxis_title="Number of Restaurants",
        xaxis=dict(tickangle=-45)
    )
    st.subheader("Restaurant Count by Region (Bar Chart)")
    st.plotly_chart(bar_chart)

    # Display a map using Folium
    st.subheader("Restaurant Locations Map")

    # Create map centered around the mean latitude and longitude
    m = folium.Map(location=[df['Latitude'].mean(), df['Longitude'].mean()], zoom_start=10)

    # Add marker cluster to the map
    marker_cluster = MarkerCluster().add_to(m)
    for index, row in df.iterrows():
        if pd.notnull(row["Latitude"]) and pd.notnull(row["Longitude"]):
            folium.Marker(
                location=[row["Latitude"], row["Longitude"]],
                popup=f"{row['Store Name']} ({row['Phone']})",
                tooltip=row["Address"]
            ).add_to(marker_cluster)

    # Display the map in Streamlit
    st.components.v1.html(m._repr_html_(), height=600)

    # New section for heatmap
    st.header("餐廳分布熱力圖")

    # Prepare data for heatmap
    heat_data = [[row['Latitude'], row['Longitude']] for index, row in df.iterrows() if pd.notnull(row['Latitude']) and pd.notnull(row['Longitude'])]

    # Create a new map for the heatmap
    heatmap = folium.Map(location=[df['Latitude'].mean(), df['Longitude'].mean()], zoom_start=10)

    # Add heatmap to the map
    HeatMap(heat_data).add_to(heatmap)

    # Display the heatmap in Streamlit
    st.components.v1.html(heatmap._repr_html_(), height=600)

    # Regional restaurant count analysis
    st.header("各區域餐廳數量分析")

    # Create bar chart for restaurant count by region using Plotly Express
    fig_bar = px.bar(region_group, x='Region', y='Count', 
                     title="各區域餐廳數量比較", 
                     color='Count',
                     color_continuous_scale=px.colors.sequential.Viridis)
    st.plotly_chart(fig_bar)

    # Create a scatter mapbox for individual restaurant locations
    fig_scatter = px.scatter_mapbox(df, lat="Latitude", lon="Longitude", 
                                    hover_name="Store Name", 
                                    hover_data=["Address", "Phone"],
                                    zoom=10, height=600,
                                    title="餐廳位置分布圖")
    fig_scatter.update_layout(mapbox_style="open-street-map")
    st.plotly_chart(fig_scatter)