Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,8 +9,9 @@ from streamlit_folium import st_folium
|
|
9 |
from geopy.geocoders import Nominatim
|
10 |
from geopy.exc import GeocoderTimedOut, GeocoderServiceError
|
11 |
import time
|
|
|
12 |
|
13 |
-
#
|
14 |
def set_background(png_file):
|
15 |
with open(png_file, "rb") as f:
|
16 |
data = f.read()
|
@@ -27,28 +28,30 @@ def set_background(png_file):
|
|
27 |
unsafe_allow_html=True
|
28 |
)
|
29 |
|
30 |
-
#
|
31 |
set_background('CAT.png')
|
32 |
|
33 |
-
#
|
34 |
st.title("寵物醫院評分查詢")
|
35 |
|
36 |
-
#
|
37 |
min_rating = st.slider("請輸入想查詢的最低評分:", 1.0, 5.0, 3.5)
|
38 |
|
39 |
-
#
|
40 |
urls = [
|
41 |
-
|
|
|
|
|
42 |
]
|
43 |
|
44 |
-
#
|
45 |
data_list = []
|
46 |
|
47 |
-
#
|
48 |
geolocator = Nominatim(user_agent="geoapiExercises")
|
49 |
-
geocode_cache = {} #
|
50 |
|
51 |
-
#
|
52 |
def geocode_address(address, retries=5, delay=5):
|
53 |
if address in geocode_cache:
|
54 |
return geocode_cache[address]
|
@@ -60,31 +63,28 @@ def geocode_address(address, retries=5, delay=5):
|
|
60 |
geocode_cache[address] = location
|
61 |
return location
|
62 |
except (GeocoderTimedOut, GeocoderServiceError) as e:
|
63 |
-
st.warning(f"
|
64 |
time.sleep(delay)
|
65 |
-
except GeocoderServiceError as e:
|
66 |
-
st.error(f"Service error: {e}")
|
67 |
-
break
|
68 |
|
69 |
-
st.warning(f"
|
70 |
return None
|
71 |
|
72 |
-
#
|
73 |
if st.button('開始爬取資料'):
|
74 |
st.write("正在爬取資料,請稍候...")
|
75 |
|
76 |
-
#
|
77 |
for url in urls:
|
78 |
response = requests.get(url)
|
79 |
soup = BeautifulSoup(response.content, 'html.parser')
|
80 |
|
81 |
-
#
|
82 |
title = soup.find('h1', class_='t-intro__title').get_text(strip=True)
|
83 |
phone = soup.find('a', class_='t-font-large').get_text(strip=True)
|
84 |
address = soup.find('a', class_='t-font-medium').get_text(strip=True)
|
85 |
rating = float(soup.find('span', class_='t-intro__recommand').get_text(strip=True))
|
86 |
|
87 |
-
#
|
88 |
if rating >= min_rating:
|
89 |
location = geocode_address(address)
|
90 |
if location:
|
@@ -97,65 +97,50 @@ if st.button('開始爬取資料'):
|
|
97 |
"緯度": location.latitude
|
98 |
})
|
99 |
|
100 |
-
#
|
101 |
if data_list:
|
102 |
df1 = pd.DataFrame(data_list)
|
103 |
|
104 |
-
#
|
105 |
df1['區域'] = df1['地址'].apply(lambda x: x.split()[0])
|
106 |
|
107 |
-
#
|
108 |
grouped_df = df1.groupby('區域').agg({
|
109 |
'標題': lambda x: ' | '.join(x),
|
110 |
'手機': lambda x: ' | '.join(x),
|
111 |
'地址': lambda x: ' | '.join(x),
|
112 |
-
'評分': 'mean' #
|
113 |
}).reset_index()
|
114 |
|
115 |
-
#
|
116 |
st.dataframe(df1)
|
117 |
|
118 |
-
#
|
119 |
bar_fig = px.bar(grouped_df, x='區域', y='評分', title="各區域寵物醫院統計", labels={'評分':'平均評分', '區域':'區域'})
|
120 |
st.plotly_chart(bar_fig)
|
121 |
|
122 |
-
#
|
123 |
pie_fig = px.pie(grouped_df, names='區域', values='評分', title="各區域寵物醫院比例")
|
124 |
st.plotly_chart(pie_fig)
|
125 |
|
126 |
-
#
|
127 |
if st.button('顯示地圖'):
|
128 |
-
#
|
129 |
map_center = [df1['緯度'].mean(), df1['經度'].mean()]
|
130 |
pet_map = folium.Map(location=map_center, zoom_start=12)
|
131 |
|
132 |
-
#
|
|
|
|
|
|
|
133 |
for index, row in df1.iterrows():
|
134 |
folium.Marker(
|
135 |
location=[row['緯度'], row['經度']],
|
136 |
popup=f"{row['標題']} (評分: {row['評分']})",
|
137 |
tooltip=row['標題']
|
138 |
-
).add_to(
|
139 |
|
140 |
-
#
|
141 |
st_folium(pet_map, width=700, height=500)
|
142 |
|
143 |
-
|
144 |
-
if st.button('發送前五筆資料到Line'):
|
145 |
-
msg = df1[:5].to_string(index=False)
|
146 |
-
|
147 |
-
token = "E0yvdJqy8zwCCvBtMiR0j3CXNi9xZaXh8g1FrPBmv79" # Replace with your LINE Notify token
|
148 |
-
|
149 |
-
# Send message to LINE
|
150 |
-
def send_line_notify(token, msg):
|
151 |
-
headers = {
|
152 |
-
"Authorization": "Bearer " + token,
|
153 |
-
"Content-Type": "application/x-www-form-urlencoded"
|
154 |
-
}
|
155 |
-
params = {"message": msg}
|
156 |
-
r = requests.post("https://notify-api.line.me/api/notify", headers=headers, params=params)
|
157 |
-
|
158 |
-
send_line_notify(token, msg)
|
159 |
-
st.success('資料已成功發送到 Line!')
|
160 |
-
else:
|
161 |
-
st.warning('沒有符合條件的資料。')
|
|
|
9 |
from geopy.geocoders import Nominatim
|
10 |
from geopy.exc import GeocoderTimedOut, GeocoderServiceError
|
11 |
import time
|
12 |
+
from folium.plugins import MarkerCluster # 新增此行用於標記聚合
|
13 |
|
14 |
+
# 設定背景圖片的函數
|
15 |
def set_background(png_file):
|
16 |
with open(png_file, "rb") as f:
|
17 |
data = f.read()
|
|
|
28 |
unsafe_allow_html=True
|
29 |
)
|
30 |
|
31 |
+
# 設定背景圖片
|
32 |
set_background('CAT.png')
|
33 |
|
34 |
+
# App 的標題
|
35 |
st.title("寵物醫院評分查詢")
|
36 |
|
37 |
+
# 用戶輸入的最低評分
|
38 |
min_rating = st.slider("請輸入想查詢的最低評分:", 1.0, 5.0, 3.5)
|
39 |
|
40 |
+
# 要爬取的 URL 列表
|
41 |
urls = [
|
42 |
+
"https://www.tw-animal.com/pet/171211/c000196.html",
|
43 |
+
"https://www.tw-animal.com/pet/171211/c000186.html",
|
44 |
+
# ... 其他 URL ...
|
45 |
]
|
46 |
|
47 |
+
# 存放提取數據的空列表
|
48 |
data_list = []
|
49 |
|
50 |
+
# 初始化地理編碼器
|
51 |
geolocator = Nominatim(user_agent="geoapiExercises")
|
52 |
+
geocode_cache = {} # 簡單的內存緩存
|
53 |
|
54 |
+
# 用於地理編碼地址的函數,帶有重試和緩存
|
55 |
def geocode_address(address, retries=5, delay=5):
|
56 |
if address in geocode_cache:
|
57 |
return geocode_cache[address]
|
|
|
63 |
geocode_cache[address] = location
|
64 |
return location
|
65 |
except (GeocoderTimedOut, GeocoderServiceError) as e:
|
66 |
+
st.warning(f"地理編碼錯誤: {e}. 重試中...")
|
67 |
time.sleep(delay)
|
|
|
|
|
|
|
68 |
|
69 |
+
st.warning(f"無法地理編碼地址: {address}")
|
70 |
return None
|
71 |
|
72 |
+
# 當按下「開始爬取資料」按鈕時執行
|
73 |
if st.button('開始爬取資料'):
|
74 |
st.write("正在爬取資料,請稍候...")
|
75 |
|
76 |
+
# 迴圈遍歷每個 URL 並提取數據
|
77 |
for url in urls:
|
78 |
response = requests.get(url)
|
79 |
soup = BeautifulSoup(response.content, 'html.parser')
|
80 |
|
81 |
+
# 提取數據
|
82 |
title = soup.find('h1', class_='t-intro__title').get_text(strip=True)
|
83 |
phone = soup.find('a', class_='t-font-large').get_text(strip=True)
|
84 |
address = soup.find('a', class_='t-font-medium').get_text(strip=True)
|
85 |
rating = float(soup.find('span', class_='t-intro__recommand').get_text(strip=True))
|
86 |
|
87 |
+
# 如果評分達到門檻,將數據添加到列表
|
88 |
if rating >= min_rating:
|
89 |
location = geocode_address(address)
|
90 |
if location:
|
|
|
97 |
"緯度": location.latitude
|
98 |
})
|
99 |
|
100 |
+
# 如果成功爬取到數據
|
101 |
if data_list:
|
102 |
df1 = pd.DataFrame(data_list)
|
103 |
|
104 |
+
# 從地址中提取區域(假設區域是地址的一部分)
|
105 |
df1['區域'] = df1['地址'].apply(lambda x: x.split()[0])
|
106 |
|
107 |
+
# 按區域分組,合併同區域的醫院
|
108 |
grouped_df = df1.groupby('區域').agg({
|
109 |
'標題': lambda x: ' | '.join(x),
|
110 |
'手機': lambda x: ' | '.join(x),
|
111 |
'地址': lambda x: ' | '.join(x),
|
112 |
+
'評分': 'mean' # 平均評分
|
113 |
}).reset_index()
|
114 |
|
115 |
+
# 顯示數據表格
|
116 |
st.dataframe(df1)
|
117 |
|
118 |
+
# 顯示 Plotly 柱狀圖
|
119 |
bar_fig = px.bar(grouped_df, x='區域', y='評分', title="各區域寵物醫院統計", labels={'評分':'平均評分', '區域':'區域'})
|
120 |
st.plotly_chart(bar_fig)
|
121 |
|
122 |
+
# 顯示 Plotly 圓餅圖
|
123 |
pie_fig = px.pie(grouped_df, names='區域', values='評分', title="各區域寵物醫院比例")
|
124 |
st.plotly_chart(pie_fig)
|
125 |
|
126 |
+
# 顯示地圖
|
127 |
if st.button('顯示地圖'):
|
128 |
+
# 創建一個 Folium 地圖,集中在平均位置
|
129 |
map_center = [df1['緯度'].mean(), df1['經度'].mean()]
|
130 |
pet_map = folium.Map(location=map_center, zoom_start=12)
|
131 |
|
132 |
+
# 創建一個標記聚合器
|
133 |
+
marker_cluster = MarkerCluster().add_to(pet_map)
|
134 |
+
|
135 |
+
# 為每家醫院添加標記
|
136 |
for index, row in df1.iterrows():
|
137 |
folium.Marker(
|
138 |
location=[row['緯度'], row['經度']],
|
139 |
popup=f"{row['標題']} (評分: {row['評分']})",
|
140 |
tooltip=row['標題']
|
141 |
+
).add_to(marker_cluster) # 添加到標記聚合器中
|
142 |
|
143 |
+
# 使用 streamlit_folium 渲染地圖
|
144 |
st_folium(pet_map, width=700, height=500)
|
145 |
|
146 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|