Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
-
import
|
4 |
import seaborn as sns
|
5 |
from sklearn.ensemble import RandomForestClassifier
|
6 |
from xgboost import XGBClassifier
|
@@ -38,26 +38,14 @@ def calculate_importances(file):
|
|
38 |
feature_names = X.columns
|
39 |
|
40 |
# Prepare DataFrame
|
41 |
-
rf_importance = {'Feature': feature_names, '
|
42 |
-
xgb_importance = {'Feature': feature_names, '
|
43 |
-
cart_importance = {'Feature': feature_names, '
|
44 |
-
|
45 |
-
# Create DataFrames
|
46 |
-
rf_df = pd.DataFrame(rf_importance)
|
47 |
-
xgb_df = pd.DataFrame(xgb_importance)
|
48 |
-
cart_df = pd.DataFrame(cart_importance)
|
49 |
-
|
50 |
-
# Merge DataFrames
|
51 |
-
importance_df = rf_df.merge(xgb_df, on='Feature').merge(cart_df, on='Feature')
|
52 |
|
53 |
# Correlation Matrix
|
54 |
corr_matrix = heart_df.corr()
|
55 |
|
56 |
-
|
57 |
-
file_name = 'feature_importances.xlsx'
|
58 |
-
importance_df.to_excel(file_name, index=False)
|
59 |
-
|
60 |
-
return file_name, importance_df, corr_matrix, rf_importances, feature_names
|
61 |
|
62 |
# Streamlit interface
|
63 |
st.title("Feature Importance Calculation")
|
@@ -67,30 +55,25 @@ uploaded_file = st.file_uploader("Upload heart.csv file", type=['csv'])
|
|
67 |
|
68 |
if uploaded_file is not None:
|
69 |
# Process the file and get results
|
70 |
-
|
71 |
-
|
72 |
-
# Display a preview of the DataFrame
|
73 |
-
st.write("Feature Importances (Preview):")
|
74 |
-
st.dataframe(importance_df.head())
|
75 |
|
76 |
-
#
|
77 |
-
with open(excel_file, "rb") as file:
|
78 |
-
btn = st.download_button(
|
79 |
-
label="Download Excel File",
|
80 |
-
data=file,
|
81 |
-
file_name=excel_file,
|
82 |
-
mime="application/vnd.ms-excel"
|
83 |
-
)
|
84 |
-
|
85 |
-
# Plot and display the Correlation Matrix
|
86 |
st.write("Correlation Matrix:")
|
87 |
plt.figure(figsize=(10, 8))
|
88 |
sns.heatmap(corr_matrix, annot=True, fmt=".2f", cmap="coolwarm", cbar=True)
|
89 |
st.pyplot(plt)
|
90 |
|
91 |
-
# Plot and display
|
92 |
st.write("Random Forest Feature Importance:")
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
+
import plotly.express as px
|
4 |
import seaborn as sns
|
5 |
from sklearn.ensemble import RandomForestClassifier
|
6 |
from xgboost import XGBClassifier
|
|
|
38 |
feature_names = X.columns
|
39 |
|
40 |
# Prepare DataFrame
|
41 |
+
rf_importance = pd.DataFrame({'Feature': feature_names, 'Importance': rf_importances})
|
42 |
+
xgb_importance = pd.DataFrame({'Feature': feature_names, 'Importance': xgb_importances})
|
43 |
+
cart_importance = pd.DataFrame({'Feature': feature_names, 'Importance': cart_importances})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
# Correlation Matrix
|
46 |
corr_matrix = heart_df.corr()
|
47 |
|
48 |
+
return rf_importance, xgb_importance, cart_importance, corr_matrix
|
|
|
|
|
|
|
|
|
49 |
|
50 |
# Streamlit interface
|
51 |
st.title("Feature Importance Calculation")
|
|
|
55 |
|
56 |
if uploaded_file is not None:
|
57 |
# Process the file and get results
|
58 |
+
rf_importance, xgb_importance, cart_importance, corr_matrix = calculate_importances(uploaded_file)
|
|
|
|
|
|
|
|
|
59 |
|
60 |
+
# Display the correlation matrix as a heatmap (static for now)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
st.write("Correlation Matrix:")
|
62 |
plt.figure(figsize=(10, 8))
|
63 |
sns.heatmap(corr_matrix, annot=True, fmt=".2f", cmap="coolwarm", cbar=True)
|
64 |
st.pyplot(plt)
|
65 |
|
66 |
+
# Plot and display Random Forest Feature Importances with Plotly
|
67 |
st.write("Random Forest Feature Importance:")
|
68 |
+
fig_rf = px.bar(rf_importance, x='Importance', y='Feature', orientation='h', title="Random Forest Feature Importances")
|
69 |
+
st.plotly_chart(fig_rf)
|
70 |
+
|
71 |
+
# Plot and display XGBoost Feature Importances with Plotly
|
72 |
+
st.write("XGBoost Feature Importance:")
|
73 |
+
fig_xgb = px.bar(xgb_importance, x='Importance', y='Feature', orientation='h', title="XGBoost Feature Importances")
|
74 |
+
st.plotly_chart(fig_xgb)
|
75 |
+
|
76 |
+
# Plot and display CART (Decision Tree) Feature Importances with Plotly
|
77 |
+
st.write("CART (Decision Tree) Feature Importance:")
|
78 |
+
fig_cart = px.bar(cart_importance, x='Importance', y='Feature', orientation='h', title="CART (Decision Tree) Feature Importances")
|
79 |
+
st.plotly_chart(fig_cart)
|