import streamlit as st import pandas as pd import plotly.express as px import seaborn as sns from sklearn.ensemble import RandomForestClassifier from xgboost import XGBClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split import numpy as np # Function to process data and return feature importances and correlation matrix def calculate_importances(file): # Read uploaded file heart_df = pd.read_csv(file) # Set X and y X = heart_df.drop('target', axis=1) y = heart_df['target'] # Split the data X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42) # Initialize models rf_model = RandomForestClassifier(random_state=42) xgb_model = XGBClassifier(use_label_encoder=False, eval_metric='logloss', random_state=42) cart_model = DecisionTreeClassifier(random_state=42) # Train models rf_model.fit(X_train, y_train) xgb_model.fit(X_train, y_train) cart_model.fit(X_train, y_train) # Get feature importances rf_importances = rf_model.feature_importances_ xgb_importances = xgb_model.feature_importances_ cart_importances = cart_model.feature_importances_ feature_names = X.columns # Prepare DataFrame rf_importance = pd.DataFrame({'Feature': feature_names, 'Importance': rf_importances}) xgb_importance = pd.DataFrame({'Feature': feature_names, 'Importance': xgb_importances}) cart_importance = pd.DataFrame({'Feature': feature_names, 'Importance': cart_importances}) # Correlation Matrix corr_matrix = heart_df.corr() return rf_importance, xgb_importance, cart_importance, corr_matrix # Streamlit interface st.title("Feature Importance Calculation") # File upload uploaded_file = st.file_uploader("Upload heart.csv file", type=['csv']) if uploaded_file is not None: # Process the file and get results rf_importance, xgb_importance, cart_importance, corr_matrix = calculate_importances(uploaded_file) # Display the correlation matrix as a heatmap (static for now) st.write("Correlation Matrix:") plt.figure(figsize=(10, 8)) sns.heatmap(corr_matrix, annot=True, fmt=".2f", cmap="coolwarm", cbar=True) st.pyplot(plt) # Plot and display Random Forest Feature Importances with Plotly st.write("Random Forest Feature Importance:") fig_rf = px.bar(rf_importance, x='Importance', y='Feature', orientation='h', title="Random Forest Feature Importances") st.plotly_chart(fig_rf) # Plot and display XGBoost Feature Importances with Plotly st.write("XGBoost Feature Importance:") fig_xgb = px.bar(xgb_importance, x='Importance', y='Feature', orientation='h', title="XGBoost Feature Importances") st.plotly_chart(fig_xgb) # Plot and display CART (Decision Tree) Feature Importances with Plotly st.write("CART (Decision Tree) Feature Importance:") fig_cart = px.bar(cart_importance, x='Importance', y='Feature', orientation='h', title="CART (Decision Tree) Feature Importances") st.plotly_chart(fig_cart)