Roberta2024's picture
Update app.py
8fe277d verified
import streamlit as st
import pandas as pd
import requests
import plotly.express as px
import matplotlib.font_manager as fm
import matplotlib as mpl
import io
import time
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
# 確保正確的中文字符編碼
st.set_page_config(page_title="🌳台灣中小企業ESG數據分析與揭露儀表板🌲", page_icon=":chart_with_upwards_trend:", layout="wide")
# 定義 URL
urls = {
"溫室氣體": "https://mopsfin.twse.com.tw/opendata/t187ap46_L_1.csv",
"能源": "https://mopsfin.twse.com.tw/opendata/t187ap46_O_2.csv",
"董事會揭露": "https://mopsfin.twse.com.tw/opendata/t187ap46_L_6.csv"
}
# 下載並載入 CSV 檔案到 DataFrame 的函數
@st.cache_data
def load_data(url):
response = requests.get(url)
response.encoding = 'utf-8'
df = pd.read_csv(io.StringIO(response.text), encoding='utf-8')
df = df.fillna(0)
return df
# Streamlit 應用程式
st.title("台灣企業ESG數據分析與揭露")
st.subheader("以溫室氣體 X 再生能源 X 董事會資訊: https://www.tejwin.com/insight/carbon-footprint-verification/")
st.subheader("ESG投資: https://www.fhtrust.com.tw/ESG/operating")
# 允許用戶選擇數據集
dataset_choice = st.selectbox("選擇要顯示的數據集", list(urls.keys()))
# 載入選定的數據集
selected_df = load_data(urls[dataset_choice])
# 顯示爬取的資料
st.write("### 爬取的資料預覽")
st.dataframe(selected_df.head())
# 過濾出數值類型的欄位,排除 '出表日期' 和 '報告年度'
numeric_columns = selected_df.select_dtypes(include=['float64', 'int64']).columns
numeric_columns = [col for col in numeric_columns if col not in ['出表日期', '報告年度']]
# 允許用戶選擇用於繪製圖表的欄位
column_choice = st.selectbox("選擇欄位來繪製圖表", numeric_columns)
# 添加一個生成圖表的按鈕
if st.button("生成圖表"):
# 顯示進度條
progress_bar = st.progress(0)
for i in range(100):
time.sleep(0.01)
progress_bar.progress(i + 1)
# 創建一個標籤頁佈局
tab1, tab2, tab3 = st.tabs(["圓餅圖", "長條圖", "K-means分析"])
with tab1:
# 使用 plotly 創建圓餅圖
fig_pie = px.pie(
selected_df,
names='公司名稱',
values=column_choice,
title=f"{dataset_choice} - {column_choice} 圓餅圖",
color_discrete_sequence=px.colors.qualitative.Pastel
)
fig_pie.update_traces(textposition='inside', textinfo='percent+label')
fig_pie.update_layout(
font=dict(size=12),
legend=dict(
orientation="h",
yanchor="top",
y=-0.3,
xanchor="center",
x=0.5
),
height=700,
margin=dict(t=50, b=50, l=50, r=50)
)
st.plotly_chart(fig_pie, use_container_width=True)
with tab2:
# 使用 plotly 創建長條圖
fig_bar = px.bar(
selected_df,
x='公司名稱',
y=column_choice,
title=f"{dataset_choice} - {column_choice} 長條圖",
color='公司名稱',
color_discrete_sequence=px.colors.qualitative.Pastel
)
fig_bar.update_layout(
xaxis_title="企業",
yaxis_title=column_choice,
font=dict(size=12),
xaxis_tickangle=-45,
showlegend=False,
height=600
)
st.plotly_chart(fig_bar, use_container_width=True)
with tab3:
if dataset_choice == "溫室氣體":
# 對溫室氣體數據進行K-means分析
st.subheader("溫室氣體數據的K-means分析")
# 選擇用於聚類的特徵
cluster_features = st.multiselect("選擇用於聚類的特徵", numeric_columns, default=numeric_columns[:2])
if len(cluster_features) >= 2:
# 準備數據
X = selected_df[cluster_features]
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# 執行K-means聚類
n_clusters = st.slider("選擇聚類數量", min_value=2, max_value=10, value=3)
kmeans = KMeans(n_clusters=n_clusters, random_state=42)
clusters = kmeans.fit_predict(X_scaled)
# 添加聚類結果到數據框
selected_df['Cluster'] = clusters
# 視覺化聚類結果
fig_scatter = px.scatter(
selected_df,
x=cluster_features[0],
y=cluster_features[1],
color='Cluster',
hover_data=['公司名稱'],
title=f"溫室氣體數據的K-means聚類 ({cluster_features[0]} vs {cluster_features[1]})"
)
st.plotly_chart(fig_scatter, use_container_width=True)
# 顯示每個聚類的特徵
st.subheader("聚類特徵")
cluster_stats = selected_df.groupby('Cluster')[cluster_features].mean()
st.dataframe(cluster_stats)
else:
st.warning("請至少選擇兩個特徵進行聚類分析。")
else:
st.info("K-means分析僅適用於溫室氣體數據集。")
st.success("圖表生成完成!")
# 下載並設置自定義字體以顯示中文字符
font_url = "https://drive.google.com/uc?id=1eGAsTN1HBpJAkeVM57_C7ccp7hbgSz3_&export=download"
font_response = requests.get(font_url)
with open("TaipeiSansTCBeta-Regular.ttf", "wb") as font_file:
font_file.write(font_response.content)
fm.fontManager.addfont("TaipeiSansTCBeta-Regular.ttf")
mpl.rc('font', family='Taipei Sans TC Beta')