Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -5,13 +5,11 @@ from PyPDF2 import PdfReader
|
|
5 |
import google.generativeai as genai
|
6 |
import os
|
7 |
from langsmith import Client
|
8 |
-
from ragas.metrics import
|
9 |
-
faithfulness, answer_relevancy, context_relevancy
|
10 |
-
)
|
11 |
|
12 |
# 加載模型
|
13 |
openelm_model = AutoModelForCausalLM.from_pretrained("apple/OpenELM-270M", trust_remote_code=True)
|
14 |
-
openelm_tokenizer = AutoTokenizer.from_pretrained("
|
15 |
|
16 |
# Gemini API 設置
|
17 |
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
|
@@ -36,10 +34,6 @@ def gemini_generate(prompt, max_tokens):
|
|
36 |
response = model.generate_content(prompt, max_output_tokens=max_tokens)
|
37 |
return response.text
|
38 |
|
39 |
-
def nvidia_generate(prompt, max_tokens):
|
40 |
-
# 這裡需要實現 Nvidia API 調用
|
41 |
-
return "Nvidia API 尚未實現"
|
42 |
-
|
43 |
def openelm_generate(prompt, max_tokens):
|
44 |
tokenized_prompt = openelm_tokenizer(prompt, return_tensors="pt")
|
45 |
output_ids = openelm_model.generate(
|
@@ -50,41 +44,41 @@ def openelm_generate(prompt, max_tokens):
|
|
50 |
return openelm_tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
51 |
|
52 |
def evaluate_response(response, context, query):
|
53 |
-
# 使用 RAGAS 評估回答
|
54 |
faith_score = faithfulness.score([response], [context], [query])
|
55 |
ans_rel_score = answer_relevancy.score([response], [query])
|
56 |
ctx_rel_score = context_relevancy.score([response], [context], [query])
|
57 |
return faith_score, ans_rel_score, ctx_rel_score
|
58 |
|
59 |
def process_query(pdf_file, llm_choice, query, max_tokens, api_key):
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
81 |
|
82 |
# Gradio 介面
|
83 |
iface = gr.Interface(
|
84 |
fn=process_query,
|
85 |
inputs=[
|
86 |
gr.File(label="上傳 PDF"),
|
87 |
-
gr.Dropdown(["Gemini", "
|
88 |
gr.Textbox(label="輸入您的問題"),
|
89 |
gr.Slider(minimum=50, maximum=1000, step=50, label="最大令牌數"),
|
90 |
gr.Textbox(label="Gemini API Key (可選)", type="password")
|
@@ -96,23 +90,7 @@ iface = gr.Interface(
|
|
96 |
gr.Number(label="上下文相關性得分")
|
97 |
],
|
98 |
title="多模型 LLM 查詢介面,支持 PDF 上下文",
|
99 |
-
description="上傳 PDF,選擇 LLM,並提出問題。回應將使用 RAGAS 指標進行評估。"
|
100 |
-
css="""
|
101 |
-
#dev-info {
|
102 |
-
font-size: 0.8rem;
|
103 |
-
color: #888;
|
104 |
-
margin-top: 1rem;
|
105 |
-
text-align: center;
|
106 |
-
}
|
107 |
-
.gr-input text {
|
108 |
-
padding: 10px;
|
109 |
-
border-radius: 5px;
|
110 |
-
font-size: 1rem;
|
111 |
-
}
|
112 |
-
.gr-output.gr-slider label {
|
113 |
-
font-weight: bold;
|
114 |
-
}
|
115 |
-
"""
|
116 |
)
|
117 |
|
118 |
if __name__ == "__main__":
|
|
|
5 |
import google.generativeai as genai
|
6 |
import os
|
7 |
from langsmith import Client
|
8 |
+
from ragas.metrics import faithfulness, answer_relevancy, context_relevancy
|
|
|
|
|
9 |
|
10 |
# 加載模型
|
11 |
openelm_model = AutoModelForCausalLM.from_pretrained("apple/OpenELM-270M", trust_remote_code=True)
|
12 |
+
openelm_tokenizer = AutoTokenizer.from_pretrained("apple/OpenELM-270M")
|
13 |
|
14 |
# Gemini API 設置
|
15 |
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
|
|
|
34 |
response = model.generate_content(prompt, max_output_tokens=max_tokens)
|
35 |
return response.text
|
36 |
|
|
|
|
|
|
|
|
|
37 |
def openelm_generate(prompt, max_tokens):
|
38 |
tokenized_prompt = openelm_tokenizer(prompt, return_tensors="pt")
|
39 |
output_ids = openelm_model.generate(
|
|
|
44 |
return openelm_tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
45 |
|
46 |
def evaluate_response(response, context, query):
|
|
|
47 |
faith_score = faithfulness.score([response], [context], [query])
|
48 |
ans_rel_score = answer_relevancy.score([response], [query])
|
49 |
ctx_rel_score = context_relevancy.score([response], [context], [query])
|
50 |
return faith_score, ans_rel_score, ctx_rel_score
|
51 |
|
52 |
def process_query(pdf_file, llm_choice, query, max_tokens, api_key):
|
53 |
+
try:
|
54 |
+
global GOOGLE_API_KEY
|
55 |
+
if api_key:
|
56 |
+
GOOGLE_API_KEY = api_key
|
57 |
+
genai.configure(api_key=GOOGLE_API_KEY)
|
58 |
+
|
59 |
+
# 從 PDF 提取文本
|
60 |
+
pdf_path = pdf_file.name
|
61 |
+
context = extract_text_from_pdf(pdf_path)
|
62 |
+
|
63 |
+
# 根據選擇的 LLM 生成回應
|
64 |
+
if llm_choice == "Gemini":
|
65 |
+
response = gemini_generate(f"上下文: {context}\n問題: {query}", max_tokens)
|
66 |
+
else: # OpenELM
|
67 |
+
response = openelm_generate(f"上下文: {context}\n問題: {query}", max_tokens)
|
68 |
+
|
69 |
+
# 評估回應
|
70 |
+
faith_score, ans_rel_score, ctx_rel_score = evaluate_response(response, context, query)
|
71 |
+
|
72 |
+
return response, faith_score, ans_rel_score, ctx_rel_score
|
73 |
+
except Exception as e:
|
74 |
+
return str(e), 0, 0, 0 # 返回錯誤消息和零分數
|
75 |
|
76 |
# Gradio 介面
|
77 |
iface = gr.Interface(
|
78 |
fn=process_query,
|
79 |
inputs=[
|
80 |
gr.File(label="上傳 PDF"),
|
81 |
+
gr.Dropdown(["Gemini", "OpenELM"], label="選擇 LLM"),
|
82 |
gr.Textbox(label="輸入您的問題"),
|
83 |
gr.Slider(minimum=50, maximum=1000, step=50, label="最大令牌數"),
|
84 |
gr.Textbox(label="Gemini API Key (可選)", type="password")
|
|
|
90 |
gr.Number(label="上下文相關性得分")
|
91 |
],
|
92 |
title="多模型 LLM 查詢介面,支持 PDF 上下文",
|
93 |
+
description="上傳 PDF,選擇 LLM,並提出問題。回應將使用 RAGAS 指標進行評估。"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
)
|
95 |
|
96 |
if __name__ == "__main__":
|