|
import os |
|
import asyncio |
|
import gradio as gr |
|
from langchain_core.prompts import PromptTemplate |
|
from langchain_core.documents import Document |
|
from langchain_google_genai import ChatGoogleGenerativeAI |
|
import google.generativeai as genai |
|
from langchain.chains.question_answering import load_qa_chain |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
from PIL import Image |
|
import io |
|
from functools import lru_cache |
|
import concurrent.futures |
|
import pymupdf |
|
|
|
|
|
genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) |
|
|
|
|
|
model_path = "nvidia/Mistral-NeMo-Minitron-8B-Base" |
|
mistral_tokenizer = None |
|
mistral_model = None |
|
|
|
def load_mistral_model(): |
|
global mistral_tokenizer, mistral_model |
|
if mistral_tokenizer is None or mistral_model is None: |
|
mistral_tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
dtype = torch.bfloat16 |
|
mistral_model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=dtype, device_map=device) |
|
|
|
@lru_cache(maxsize=100) |
|
def get_pdf_content(file_path): |
|
doc = pymupdf.open(file_path) |
|
content = [] |
|
for page_num in range(len(doc)): |
|
page = doc[page_num] |
|
text = page.get_text() |
|
content.append(Document(page_content=text, metadata={"page": page_num + 1})) |
|
return content |
|
|
|
async def process_pdf(file_path, question): |
|
model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3) |
|
prompt_template = """Answer the question as precise as possible using the provided context. If the answer is not contained in the context, say "answer not available in context" \n\n Context: \n {context}?\n Question: \n {question} \n Answer: """ |
|
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) |
|
|
|
pdf_content = get_pdf_content(file_path) |
|
context = "\n".join([doc.page_content for doc in pdf_content[:5]]) |
|
|
|
stuff_chain = load_qa_chain(model, chain_type="stuff", prompt=prompt) |
|
stuff_answer = await stuff_chain.arun({"input_documents": pdf_content[:5], "question": question, "context": context}) |
|
return stuff_answer |
|
|
|
async def process_image(image, question): |
|
model = genai.GenerativeModel('gemini-pro-vision') |
|
response = await model.generate_content_async([image, question]) |
|
return response.text |
|
|
|
async def generate_mistral_followup(answer): |
|
load_mistral_model() |
|
mistral_prompt = f"Based on this answer: {answer}\nGenerate a follow-up question:" |
|
mistral_inputs = mistral_tokenizer.encode(mistral_prompt, return_tensors='pt').to(mistral_model.device) |
|
with torch.no_grad(): |
|
mistral_outputs = mistral_model.generate(mistral_inputs, max_length=50) |
|
mistral_output = mistral_tokenizer.decode(mistral_outputs[0], skip_special_tokens=True) |
|
return mistral_output |
|
|
|
async def process_input(file, image, question): |
|
try: |
|
if file is not None: |
|
gemini_answer = await process_pdf(file.name, question) |
|
elif image is not None: |
|
gemini_answer = await process_image(image, question) |
|
else: |
|
return "Please upload a PDF file or an image." |
|
|
|
mistral_followup = await generate_mistral_followup(gemini_answer) |
|
combined_output = f"Gemini Answer: {gemini_answer}\n\nMistral Follow-up: {mistral_followup}" |
|
return combined_output |
|
except Exception as e: |
|
return f"An error occurred: {str(e)}" |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Optimized Multi-modal RAG Knowledge Retrieval using Gemini API and Mistral Model") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
input_file = gr.File(label="Upload PDF File") |
|
input_image = gr.Image(type="pil", label="Upload Image") |
|
input_question = gr.Textbox(label="Ask about the document or image") |
|
|
|
output_text = gr.Textbox(label="Answer - Combined Gemini and Mistral") |
|
|
|
submit_button = gr.Button("Submit") |
|
submit_button.click(fn=lambda file, image, question: asyncio.run(process_input(file, image, question)), |
|
inputs=[input_file, input_image, input_question], |
|
outputs=output_text) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |