Spaces:
Paused
Paused
File size: 10,335 Bytes
74044e0 6ed9cc0 74044e0 6ed9cc0 0b6f5b0 74044e0 6355832 74044e0 6ed9cc0 74044e0 6ed9cc0 74044e0 6ed9cc0 74044e0 6ed9cc0 74044e0 6ed9cc0 4f4f63f 74044e0 6ed9cc0 4f4f63f 6ed9cc0 4f4f63f 6ed9cc0 4f4f63f 6ed9cc0 74044e0 6ed9cc0 4f4f63f 6ed9cc0 74044e0 6ed9cc0 74044e0 6ed9cc0 74044e0 6ed9cc0 74044e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import re
import uuid
import pandas as pd
import streamlit as st
import re
import matplotlib.pyplot as plt
import subprocess
import sys
import io
from utils.default_values import get_system_prompt, get_guidelines_dict
from utils.epfl_meditron_utils import get_llm_response, gptq_model_options
from utils.openai_utils import get_available_engines, get_search_query_type_options
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
from sklearn.metrics import classification_report
DATA_FOLDER = "data/"
POC_VERSION = "0.1.0"
MAX_QUESTIONS = 10
AVAILABLE_LANGUAGES = ["DE", "EN", "FR"]
st.set_page_config(page_title='Medgate Whisper PoC', page_icon='public/medgate.png')
# Azure apparently truncates message if longer than 200, see
MAX_SYSTEM_MESSAGE_TOKENS = 200
def format_question(q):
res = q
# Remove numerical prefixes, if any, e.g. '1. [...]'
if re.match(r'^[0-9].\s', q):
res = res[3:]
# Replace doc reference by doc name
if len(st.session_state["citations"]) > 0:
for source_ref in re.findall(r'\[doc[0-9]+\]', res):
citation_number = int(re.findall(r'[0-9]+', source_ref)[0])
citation_index = citation_number - 1 if citation_number > 0 else 0
citation = st.session_state["citations"][citation_index]
source_title = citation["title"]
res = res.replace(source_ref, '[' + source_title + ']')
return res.strip()
def get_text_from_row(text):
res = str(text)
if res == "nan":
return ""
return res
def get_questions_from_df(df, lang, test_scenario_name):
questions = []
for i, row in df.iterrows():
questions.append({
"question": row[lang + ": Fragen"],
"answer": get_text_from_row(row[test_scenario_name]),
"question_id": uuid.uuid4()
})
return questions
def get_questions(df, lead_symptom, lang, test_scenario_name):
print(str(st.session_state["lead_symptom"]) + " -> " + lead_symptom)
print(str(st.session_state["scenario_name"]) + " -> " + test_scenario_name)
if st.session_state["lead_symptom"] != lead_symptom or st.session_state["scenario_name"] != test_scenario_name:
st.session_state["lead_symptom"] = lead_symptom
st.session_state["scenario_name"] = test_scenario_name
symptom_col_name = st.session_state["language"] + ": Symptome"
df_questions = df[(df[symptom_col_name] == lead_symptom)]
st.session_state["questions"] = get_questions_from_df(df_questions, lang, test_scenario_name)
return st.session_state["questions"]
def display_streamlit_sidebar():
st.sidebar.title("Local LLM PoC " + str(POC_VERSION))
st.sidebar.write('**Parameters**')
form = st.sidebar.form("config_form", clear_on_submit=True)
model_name_or_path = form.selectbox("Select model", gptq_model_options())
temperature = form.slider(label="Temperature", min_value=0.0, max_value=1.0, step=0.01, value=st.session_state["temperature"])
do_sample = form.checkbox('do_sample', value=st.session_state["do_sample"])
top_p = form.slider(label="top_p", min_value=0.0, max_value=1.0, step=0.01, value=st.session_state["top_p"])
top_k = form.slider(label="top_k", min_value=1, max_value=1000, step=1, value=st.session_state["top_k"])
max_new_tokens = form.slider(label="max_new_tokens", min_value=32, max_value=512, step=1, value=st.session_state["max_new_tokens"])
repetition_penalty = form.slider(label="repetition_penalty", min_value=0.0, max_value=5.0, step=0.01, value=st.session_state["repetition_penalty"])
submitted = form.form_submit_button("Start session")
if submitted and not st.session_state['session_started']:
print('Parameters updated...')
st.session_state['session_started'] = True
st.session_state["session_events"] = []
st.session_state["model_name_or_path"] = model_name_or_path
st.session_state["temperature"] = temperature
st.session_state["do_sample"] = do_sample
st.session_state["top_p"] = top_p
st.session_state["top_k"] = top_k
st.session_state["max_new_tokens"] = max_new_tokens
st.session_state["repetition_penalty"] = repetition_penalty
st.rerun()
def init_session_state():
print('init_session_state()')
st.session_state['session_started'] = False
st.session_state["session_events"] = []
st.session_state["model_name_or_path"] = "TheBloke/meditron-7B-GPTQ"
st.session_state["temperature"] = 0.01
st.session_state["do_sample"] = True
st.session_state["top_p"] = 0.95
st.session_state["top_k"] = 40
st.session_state["max_new_tokens"] = 512
st.session_state["repetition_penalty"] = 1.1
st.session_state["system_prompt"] = "You are a medical expert that provides answers for a medically trained audience"
def get_genders():
return ['Male', 'Female']
def display_session_overview():
st.subheader('History of LLM queries')
st.write(st.session_state["llm_messages"])
st.subheader("Session costs overview")
df_session_overview = pd.DataFrame.from_dict(st.session_state["session_events"])
st.write(df_session_overview)
if "prompt_tokens" in df_session_overview:
prompt_tokens = df_session_overview["prompt_tokens"].sum()
st.write("Prompt tokens: " + str(prompt_tokens))
prompt_cost = df_session_overview["prompt_cost_chf"].sum()
st.write("Prompt CHF: " + str(prompt_cost))
completion_tokens = df_session_overview["completion_tokens"].sum()
st.write("Completion tokens: " + str(completion_tokens))
completion_cost = df_session_overview["completion_cost_chf"].sum()
st.write("Completion CHF: " + str(completion_cost))
completion_cost = df_session_overview["total_cost_chf"].sum()
st.write("Total costs CHF: " + str(completion_cost))
total_time = df_session_overview["response_time"].sum()
st.write("Total compute time (ms): " + str(total_time))
def plot_report(title, expected, predicted, display_labels):
st.markdown('#### ' + title)
conf_matrix = confusion_matrix(expected, predicted, labels=display_labels)
conf_matrix_plot = ConfusionMatrixDisplay(confusion_matrix=conf_matrix, display_labels=display_labels)
conf_matrix_plot.plot()
st.pyplot(plt.gcf())
report = classification_report(expected, predicted, output_dict=True)
df_report = pd.DataFrame(report).transpose()
st.write(df_report)
df_rp = df_report
df_rp = df_rp.drop('support', axis=1)
df_rp = df_rp.drop(['accuracy', 'macro avg', 'weighted avg'])
try:
ax = df_rp.plot(kind="bar", legend=True)
for container in ax.containers:
ax.bar_label(container, fontsize=7)
plt.xticks(rotation=45)
plt.legend(loc=(1.04, 0))
st.pyplot(plt.gcf())
except Exception as e:
# Out of bounds
pass
def get_prompt_format(model_name):
if model_name == "TheBloke/Llama-2-13B-chat-GPTQ":
return '''[INST] <<SYS>>
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
<</SYS>>
{prompt}[/INST]
'''
if model_name == "TheBloke/Llama-2-7B-Chat-GPTQ":
return "[INST] <<SYS>>\nYou are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.\n<</SYS>>\n{prompt}[/INST]"
if model_name == "TheBloke/meditron-7B-GPTQ" or model_name == "TheBloke/meditron-70B-GPTQ":
return '''<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant'''
return ""
def format_prompt(template, system_message, prompt):
if template == "":
return f"{system_message} {prompt}"
return template.format(system_message=system_message, prompt=prompt)
def display_llm_output():
st.header("LLM")
form = st.form('llm')
prompt_format_str = get_prompt_format(st.session_state["model_name_or_path"])
prompt_format = form.text_area('Prompt format', value=prompt_format_str)
system_prompt = ""#form.text_area('System prompt', value=st.session_state["system_prompt"])
prompt = form.text_area('Prompt', value=st.session_state["prompt"])
submitted = form.form_submit_button('Submit')
if submitted:
formatted_prompt = format_prompt(prompt_format, system_prompt, prompt)
print(f"Formatted prompt: {format_prompt}")
llm_response = get_llm_response(
st.session_state["model_name"],
st.session_state["temperature"],
st.session_state["do_sample"],
st.session_state["top_p"],
st.session_state["top_k"],
st.session_state["max_new_tokens"],
st.session_state["repetition_penalty"],
formatted_prompt)
st.write(llm_response)
st.write('Done displaying LLM response')
def main():
print('Running Local LLM PoC Streamlit app...')
session_inactive_info = st.empty()
if "session_started" not in st.session_state or not st.session_state["session_started"]:
init_session_state()
display_streamlit_sidebar()
else:
display_streamlit_sidebar()
session_inactive_info.empty()
display_llm_output()
display_session_overview()
if __name__ == '__main__':
main()
|