File size: 7,209 Bytes
74044e0
 
 
 
 
 
 
 
 
 
 
 
5fd44e9
 
74044e0
6ed9cc0
74044e0
 
 
 
 
a358346
74044e0
 
 
 
 
 
 
 
 
a358346
5fd44e9
6ed9cc0
0b6f5b0
 
 
 
4ac6668
0b6f5b0
74044e0
 
b424029
74044e0
 
 
6ed9cc0
5fd44e9
 
 
 
 
 
 
 
 
6ed9cc0
74044e0
6ed9cc0
74044e0
6ed9cc0
 
 
74044e0
 
6ed9cc0
74044e0
 
 
 
6ed9cc0
 
c011bf3
 
6ed9cc0
 
 
 
4ac6668
6ed9cc0
4f4f63f
a7a99ea
7c3effb
5fd44e9
74044e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ed9cc0
dad4228
73c445e
dad4228
73c445e
4f4f63f
 
6ed9cc0
4f4f63f
73c445e
6ed9cc0
dad4228
4f4f63f
 
 
dad4228
 
 
6ed9cc0
5fd44e9
6ed9cc0
 
 
 
 
 
74044e0
 
 
 
 
6ed9cc0
87fdf21
 
 
74044e0
6ed9cc0
74044e0
6ed9cc0
a7a99ea
 
6ed9cc0
 
74044e0
5fd44e9
6ed9cc0
 
 
 
 
 
 
74044e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import re
import uuid

import pandas as pd
import streamlit as st
import re
import matplotlib.pyplot as plt

import subprocess
import sys
import io

import inspect

from utils.default_values import get_system_prompt, get_guidelines_dict
from utils.epfl_meditron_utils import get_llm_response, gptq_model_options
from utils.openai_utils import get_available_engines, get_search_query_type_options

from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
from sklearn.metrics import classification_report

POC_VERSION = "0.1.1"

st.set_page_config(page_title='Medgate Whisper PoC', page_icon='public/medgate.png')

def display_streamlit_sidebar():
    st.sidebar.title("Local LLM PoC " + str(POC_VERSION))

    st.sidebar.write('**Parameters**')
    form = st.sidebar.form("config_form", clear_on_submit=True)

    model_name_or_path = form.selectbox("Select model", gptq_model_options(), index=st.session_state["model_index"])
    model_name_or_path_other = form.text_input('Or input any GPTQ model', value=st.session_state["model_name_or_path_other"])
    
    temperature = form.slider(label="Temperature", min_value=0.0, max_value=1.0, step=0.01, value=st.session_state["temperature"])
    do_sample = form.checkbox('do_sample', value=st.session_state["do_sample"])
    top_p = form.slider(label="top_p", min_value=0.0, max_value=1.0, step=0.01, value=st.session_state["top_p"])
    top_k = form.slider(label="top_k", min_value=1, max_value=1000, step=1, value=st.session_state["top_k"])
    max_new_tokens = form.slider(label="max_new_tokens", min_value=32, max_value=4096, step=1, value=st.session_state["max_new_tokens"])
    repetition_penalty = form.slider(label="repetition_penalty", min_value=0.0, max_value=5.0, step=0.01, value=st.session_state["repetition_penalty"])

    submitted = form.form_submit_button("Start session")
    if submitted:
        print('Parameters updated...')
        st.session_state['session_started'] = True

        st.session_state["session_events"] = []
        
        if len(model_name_or_path_other) > 0:
            st.session_state["model_name"] = model_name_or_path_other
            st.session_state["model_name_or_path_other"] = model_name_or_path_other
        else:
            st.session_state["model_name"] = model_name_or_path
            st.session_state["model_index"] = gptq_model_options().index(model_name_or_path)
            
            
        st.session_state["model_name_or_path"] = model_name_or_path
        st.session_state["temperature"] = temperature
        st.session_state["do_sample"] = do_sample
        st.session_state["top_p"] = top_p
        st.session_state["top_k"] = top_k
        st.session_state["max_new_tokens"] = max_new_tokens
        st.session_state["repetition_penalty"] = repetition_penalty

        st.rerun()
      

def init_session_state():
    print('init_session_state()')
    st.session_state['session_started'] = False
    st.session_state["session_events"] = []
    st.session_state["model_name_or_path"] = "TheBloke/meditron-7B-GPTQ"
    st.session_state["model_name_or_path_other"] = ""
    st.session_state["model_index"] = 0
    st.session_state["temperature"] = 0.01
    st.session_state["do_sample"] = True
    st.session_state["top_p"] = 0.95
    st.session_state["top_k"] = 40
    st.session_state["max_new_tokens"] = 4096
    st.session_state["repetition_penalty"] = 1.1
    st.session_state["system_prompt"] = "You are a medical expert that provides answers for a medically trained audience"
    st.session_state["prompt"] = ""
    st.session_state["llm_messages"] = []
    

def display_session_overview():
    st.subheader('History of LLM queries')
    st.write(st.session_state["llm_messages"])
    st.subheader("Session costs overview")

    df_session_overview = pd.DataFrame.from_dict(st.session_state["session_events"])
    st.write(df_session_overview)

    if "prompt_tokens" in df_session_overview:
        prompt_tokens = df_session_overview["prompt_tokens"].sum()
        st.write("Prompt tokens: " + str(prompt_tokens))

        prompt_cost = df_session_overview["prompt_cost_chf"].sum()
        st.write("Prompt CHF: " + str(prompt_cost))

        completion_tokens = df_session_overview["completion_tokens"].sum()
        st.write("Completion tokens: " + str(completion_tokens))

        completion_cost = df_session_overview["completion_cost_chf"].sum()
        st.write("Completion CHF: " + str(completion_cost))

        completion_cost = df_session_overview["total_cost_chf"].sum()
        st.write("Total costs CHF: " + str(completion_cost))

        total_time = df_session_overview["response_time"].sum()
        st.write("Total compute time (ms): " + str(total_time))


def get_prompt_format(model_name):
    formatted_text = ""
    if model_name == "TheBloke/Llama-2-13B-chat-GPTQ" or model_name== "TheBloke/Llama-2-7B-Chat-GPTQ":
        formatted_text = '''[INST] <<SYS>>
                {system_message}
                <</SYS>>
                {prompt}[/INST]

                '''

    if model_name == "TheBloke/meditron-7B-GPTQ" or model_name == "TheBloke/meditron-70B-GPTQ":
        formatted_text = '''<|im_start|>system
                {system_message}<|im_end|>
                <|im_start|>user
                {prompt}<|im_end|>
                <|im_start|>assistant
                
                '''
    
    return inspect.cleandoc(formatted_text)

def format_prompt(template, system_message, prompt):
    if template == "":
        return f"{system_message} {prompt}"
    return template.format(system_message=system_message, prompt=prompt)

def display_llm_output():
    st.header("LLM")

    form = st.form('llm')

    prompt_format_str = get_prompt_format(st.session_state["model_name_or_path"])
    prompt_format = form.text_area('Prompt format', value=prompt_format_str, height=170)
    system_prompt = form.text_area('System message', value=st.session_state["system_prompt"], height=170)
    prompt = form.text_area('Prompt', value=st.session_state["prompt"], height=170)

    submitted = form.form_submit_button('Submit')

    if submitted:
        st.session_state["system_prompt"] = system_prompt
        st.session_state["prompt"] = prompt
        formatted_prompt = format_prompt(prompt_format, system_prompt, prompt)
        print(f"Formatted prompt: {format_prompt}")
        llm_response = get_llm_response(
            st.session_state["model_name"],
            st.session_state["temperature"],
            st.session_state["do_sample"],
            st.session_state["top_p"],
            st.session_state["top_k"],
            st.session_state["max_new_tokens"],
            st.session_state["repetition_penalty"],
            formatted_prompt)
        st.write(llm_response)

def main():
    print('Running Local LLM PoC Streamlit app...')
    session_inactive_info = st.empty()
    if "session_started" not in st.session_state or not st.session_state["session_started"]:
        init_session_state()
        display_streamlit_sidebar()
    else:
        display_streamlit_sidebar()
        session_inactive_info.empty()
        display_llm_output()
        display_session_overview()


if __name__ == '__main__':
    main()