Spaces:
Paused
Paused
import re | |
import uuid | |
import pandas as pd | |
import streamlit as st | |
import re | |
import matplotlib.pyplot as plt | |
import subprocess | |
import sys | |
import io | |
from utils.default_values import get_system_prompt, get_guidelines_dict | |
from utils.epfl_meditron_utils import get_llm_response, gptq_model_options | |
from utils.openai_utils import get_available_engines, get_search_query_type_options | |
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay | |
from sklearn.metrics import classification_report | |
DATA_FOLDER = "data/" | |
POC_VERSION = "0.1.0" | |
MAX_QUESTIONS = 10 | |
AVAILABLE_LANGUAGES = ["DE", "EN", "FR"] | |
st.set_page_config(page_title='Medgate Whisper PoC', page_icon='public/medgate.png') | |
# Azure apparently truncates message if longer than 200, see | |
MAX_SYSTEM_MESSAGE_TOKENS = 200 | |
def format_question(q): | |
res = q | |
# Remove numerical prefixes, if any, e.g. '1. [...]' | |
if re.match(r'^[0-9].\s', q): | |
res = res[3:] | |
# Replace doc reference by doc name | |
if len(st.session_state["citations"]) > 0: | |
for source_ref in re.findall(r'\[doc[0-9]+\]', res): | |
citation_number = int(re.findall(r'[0-9]+', source_ref)[0]) | |
citation_index = citation_number - 1 if citation_number > 0 else 0 | |
citation = st.session_state["citations"][citation_index] | |
source_title = citation["title"] | |
res = res.replace(source_ref, '[' + source_title + ']') | |
return res.strip() | |
def get_text_from_row(text): | |
res = str(text) | |
if res == "nan": | |
return "" | |
return res | |
def get_questions_from_df(df, lang, test_scenario_name): | |
questions = [] | |
for i, row in df.iterrows(): | |
questions.append({ | |
"question": row[lang + ": Fragen"], | |
"answer": get_text_from_row(row[test_scenario_name]), | |
"question_id": uuid.uuid4() | |
}) | |
return questions | |
def get_questions(df, lead_symptom, lang, test_scenario_name): | |
print(str(st.session_state["lead_symptom"]) + " -> " + lead_symptom) | |
print(str(st.session_state["scenario_name"]) + " -> " + test_scenario_name) | |
if st.session_state["lead_symptom"] != lead_symptom or st.session_state["scenario_name"] != test_scenario_name: | |
st.session_state["lead_symptom"] = lead_symptom | |
st.session_state["scenario_name"] = test_scenario_name | |
symptom_col_name = st.session_state["language"] + ": Symptome" | |
df_questions = df[(df[symptom_col_name] == lead_symptom)] | |
st.session_state["questions"] = get_questions_from_df(df_questions, lang, test_scenario_name) | |
return st.session_state["questions"] | |
def display_streamlit_sidebar(): | |
st.sidebar.title("Local LLM PoC " + str(POC_VERSION)) | |
st.sidebar.write('**Parameters**') | |
form = st.sidebar.form("config_form", clear_on_submit=True) | |
model_name_or_path = form.selectbox("Select model", gptq_model_options()) | |
temperature = form.slider(label="Temperature", min_value=0.0, max_value=1.0, step=0.01, value=0.01) | |
do_sample = form.checkbox('do_sample') | |
top_p = form.slider(label="top_p", min_value=0.0, max_value=1.0, step=0.01, value=0.95) | |
top_k = form.slider(label="top_k", min_value=1, max_value=1000, step=1, value=40) | |
max_new_tokens = form.slider(label="max_new_tokens", min_value=32, max_value=512, step=1, value=32) | |
repetition_penalty = form.slider(label="repetition_penalty", min_value=0.0, max_value=1.0, step=0.01, value=0.95) | |
temperature = form.slider('Temperature (0 = deterministic, 1 = more freedom)', min_value=0.0, | |
max_value=1.0, value=st.session_state['temperature'], step=0.1) | |
top_p = form.slider('top_p (0 = focused, 1 = broader answer range)', min_value=0.0, | |
max_value=1.0, value=st.session_state['top_p'], step=0.1) | |
form.write('Best practice is to only modify temperature or top_p, not both') | |
submitted = form.form_submit_button("Start session") | |
if submitted and not st.session_state['session_started']: | |
print('Parameters updated...') | |
st.session_state['session_started'] = True | |
st.session_state["session_events"] = [] | |
st.session_state["model_name_or_path"] = model_name_or_path | |
st.session_state["temperature"] = temperature | |
st.session_state["do_sample"] = do_sample | |
st.session_state["top_p"] = top_p | |
st.session_state["top_k"] = top_k | |
st.session_state["max_new_tokens"] = max_new_tokens | |
st.session_state["repetition_penalty"] = repetition_penalty | |
st.rerun() | |
def to_str(text): | |
res = str(text) | |
if res == "nan": | |
return " " | |
return " " + res | |
def set_df_prompts(path, sheet_name): | |
df_prompts = pd.read_excel(path, sheet_name, header=None) | |
for i in range(3, df_prompts.shape[0]): | |
df_prompts.iloc[2] += df_prompts.iloc[i].apply(to_str) | |
df_prompts = df_prompts.T | |
df_prompts = df_prompts[[0, 1, 2]] | |
df_prompts[0] = df_prompts[0].astype(str) | |
df_prompts[1] = df_prompts[1].astype(str) | |
df_prompts[2] = df_prompts[2].astype(str) | |
df_prompts.columns = ["Questionnaire", "Used Guideline", "Prompt"] | |
df_prompts = df_prompts[1:] | |
st.session_state["df_prompts"] = df_prompts | |
def handle_nbq_click(c): | |
question_without_source = re.sub(r'\[.*\]', '', c) | |
question_without_source = question_without_source.strip() | |
st.session_state['doctor_question'] = question_without_source | |
def get_doctor_question_value(): | |
if 'doctor_question' in st.session_state: | |
return st.session_state['doctor_question'] | |
return '' | |
def update_chat_history(dr_question, patient_reply): | |
print("update_chat_history" + str(dr_question) + " - " + str(patient_reply) + '...\n') | |
if dr_question is not None: | |
dr_msg = { | |
"role": "Doctor", | |
"content": dr_question | |
} | |
st.session_state["chat_history_array"].append(dr_msg) | |
if patient_reply is not None: | |
patient_msg = { | |
"role": "Patient", | |
"content": patient_reply | |
} | |
st.session_state["chat_history_array"].append(patient_msg) | |
return st.session_state["chat_history_array"] | |
def get_chat_history_string(chat_history): | |
res = '' | |
for i in chat_history: | |
if i["role"] == "Doctor": | |
res += '**Doctor**: ' + str(i["content"].strip()) + " \n " | |
elif i["role"] == "Patient": | |
res += '**Patient**: ' + str(i["content"].strip()) + " \n\n " | |
else: | |
raise Exception('Unknown role: ' + str(i["role"])) | |
return res | |
def init_session_state(): | |
print('init_session_state()') | |
st.session_state['session_started'] = False | |
st.session_state["session_events"] = [] | |
st.session_state["model_name_or_path"] = "TheBloke/meditron-7B-GPTQ" | |
st.session_state["temperature"] = 0.01 | |
st.session_state["do_sample"] = True | |
st.session_state["top_p"] = 0.95 | |
st.session_state["top_k"] = 40 | |
st.session_state["max_new_tokens"] = 512 | |
st.session_state["repetition_penalty"] = 1.1 | |
st.session_state["system_message"] = "You are a medical expert that provides answers for a medically trained audience" | |
def get_genders(): | |
return ['Male', 'Female'] | |
def display_session_overview(): | |
st.subheader('History of LLM queries') | |
st.write(st.session_state["llm_messages"]) | |
st.subheader("Session costs overview") | |
df_session_overview = pd.DataFrame.from_dict(st.session_state["session_events"]) | |
st.write(df_session_overview) | |
if "prompt_tokens" in df_session_overview: | |
prompt_tokens = df_session_overview["prompt_tokens"].sum() | |
st.write("Prompt tokens: " + str(prompt_tokens)) | |
prompt_cost = df_session_overview["prompt_cost_chf"].sum() | |
st.write("Prompt CHF: " + str(prompt_cost)) | |
completion_tokens = df_session_overview["completion_tokens"].sum() | |
st.write("Completion tokens: " + str(completion_tokens)) | |
completion_cost = df_session_overview["completion_cost_chf"].sum() | |
st.write("Completion CHF: " + str(completion_cost)) | |
completion_cost = df_session_overview["total_cost_chf"].sum() | |
st.write("Total costs CHF: " + str(completion_cost)) | |
total_time = df_session_overview["response_time"].sum() | |
st.write("Total compute time (ms): " + str(total_time)) | |
def remove_question(question_id): | |
st.session_state["questions"] = [value for value in st.session_state["questions"] if | |
str(value["question_id"]) != str(question_id)] | |
st.rerun() | |
def get_prompt_from_lead_symptom(df_config, df_prompt, lead_symptom, lang, fallback=True): | |
de_lead_symptom = lead_symptom | |
if lang != "DE": | |
df_lead_symptom = df_config[df_config[lang + ": Symptome"] == lead_symptom] | |
de_lead_symptom = df_lead_symptom["DE: Symptome"].iloc[0] | |
print("DE lead symptom: " + de_lead_symptom) | |
for i, row in df_prompt.iterrows(): | |
if de_lead_symptom in row["Questionnaire"]: | |
return row["Prompt"] | |
warning_text = "No guidelines found for lead symptom " + lead_symptom + " (" + de_lead_symptom + ")" | |
if fallback: | |
st.toast(warning_text + ", using generic prompt", icon='🚨') | |
return st.session_state["system_prompt"] | |
st.toast(warning_text, icon='🚨') | |
return "" | |
def get_scenarios(df): | |
return [v for v in df.columns.values if v.startswith('TLC') or v.startswith('GP')] | |
def get_gender_age_from_test_scenario(test_scenario): | |
try: | |
result = re.search(r"([FM])(\d+)", test_scenario) | |
res_age = int(result.group(2)) | |
gender = result.group(1) | |
res_gender = None | |
if gender == "M": | |
res_gender = "Male" | |
elif gender == "F": | |
res_gender = "Female" | |
else: | |
raise Exception('Unexpected gender') | |
return res_gender, res_age | |
except: | |
st.error("Unable to extract name, gender; using 30M as default") | |
return "Male", 30 | |
def get_freetext_to_reco(reco_freetext_cased, emg_class_enabled=False): | |
reco_freetext = "" | |
if reco_freetext_cased: | |
reco_freetext = reco_freetext_cased.lower() | |
if reco_freetext.startswith('treat remotely') or reco_freetext.startswith('telecare'): | |
return 'TELECARE' | |
if reco_freetext.startswith('treat ad-real') or reco_freetext.startswith('gp') \ | |
or reco_freetext.startswith('general practitioner'): | |
return 'GP' | |
if reco_freetext.startswith('emergency') or reco_freetext.startswith('emg') \ | |
or reco_freetext.startswith('urgent'): | |
if emg_class_enabled: | |
return 'EMERGENCY' | |
return 'GP' | |
if "gp" in reco_freetext or 'general practitioner' in reco_freetext \ | |
or "nicht über tele" in reco_freetext or 'durch einen arzt erford' in reco_freetext \ | |
or "persönliche untersuchung erfordert" in reco_freetext: | |
return 'GP' | |
if ("telecare" in reco_freetext or 'telemed' in reco_freetext or | |
'can be treated remotely' in reco_freetext): | |
return 'TELECARE' | |
if ('emergency' in reco_freetext or 'urgent' in reco_freetext or | |
'not be treated remotely' in reco_freetext or "nicht tele" in reco_freetext): | |
return 'GP' | |
warning_msg = 'Cannot extract reco from LLM text: ' + reco_freetext | |
st.toast(warning_msg) | |
print(warning_msg) | |
return 'TRIAGE_IMPOSSIBLE' | |
def get_structured_reco(row, index, emg_class_enabled): | |
freetext_reco_col_name = "llm_reco_freetext_" + str(index) | |
freetext_reco = row[freetext_reco_col_name].lower() | |
return get_freetext_to_reco(freetext_reco, emg_class_enabled) | |
def add_expected_dispo(row, emg_class_enabled): | |
disposition = row["disposition"] | |
if disposition == "GP" or disposition == "TELECARE": | |
return disposition | |
if disposition == "EMERGENCY": | |
if emg_class_enabled: | |
return "EMERGENCY" | |
return "GP" | |
raise Exception("Missing disposition for row " + str(row.name) + " with summary " + row["case_summary"]) | |
def get_test_scenarios(df): | |
res = [] | |
for col in df.columns.values: | |
if str(col).startswith('GP') or str(col).startswith('TLC'): | |
res.append(col) | |
return res | |
def get_transcript(df, test_scenario, lang): | |
transcript = "" | |
for i, row in df.iterrows(): | |
transcript += "\nDoctor: " + row[lang + ": Fragen"] | |
transcript += ", Patient: " + str(row[test_scenario]) | |
return transcript | |
def get_expected_from_scenario(test_scenario): | |
reco = test_scenario.split('_')[0] | |
if reco == "GP": | |
return "GP" | |
elif reco == "TLC": | |
return "TELECARE" | |
else: | |
raise Exception('Unexpected reco: ' + reco) | |
def plot_report(title, expected, predicted, display_labels): | |
st.markdown('#### ' + title) | |
conf_matrix = confusion_matrix(expected, predicted, labels=display_labels) | |
conf_matrix_plot = ConfusionMatrixDisplay(confusion_matrix=conf_matrix, display_labels=display_labels) | |
conf_matrix_plot.plot() | |
st.pyplot(plt.gcf()) | |
report = classification_report(expected, predicted, output_dict=True) | |
df_report = pd.DataFrame(report).transpose() | |
st.write(df_report) | |
df_rp = df_report | |
df_rp = df_rp.drop('support', axis=1) | |
df_rp = df_rp.drop(['accuracy', 'macro avg', 'weighted avg']) | |
try: | |
ax = df_rp.plot(kind="bar", legend=True) | |
for container in ax.containers: | |
ax.bar_label(container, fontsize=7) | |
plt.xticks(rotation=45) | |
plt.legend(loc=(1.04, 0)) | |
st.pyplot(plt.gcf()) | |
except Exception as e: | |
# Out of bounds | |
pass | |
def get_complete_prompt(generic_prompt, guidelines_prompt): | |
complete_prompt = "" | |
if generic_prompt: | |
complete_prompt += generic_prompt | |
if generic_prompt and guidelines_prompt: | |
complete_prompt += ".\n\n" | |
if guidelines_prompt: | |
complete_prompt += guidelines_prompt | |
return complete_prompt | |
def run_command(args): | |
"""Run command, transfer stdout/stderr back into Streamlit and manage error""" | |
cmd = ' '.join(args) | |
result = subprocess.run(cmd, capture_output=True, text=True) | |
print(result) | |
def get_diarized_f_path(audio_f_name): | |
# TODO p2: Quick hack, cleaner with os or regexes | |
base_name = audio_f_name.split('.')[0] | |
return DATA_FOLDER + base_name + ".txt" | |
def get_prompt_format(model_name): | |
if model_name == "TheBloke/Llama-2-13B-chat-GPTQ": | |
return '''[INST] <<SYS>> | |
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information. | |
<</SYS>> | |
{prompt}[/INST] | |
''' | |
if model_name == "TheBloke/Llama-2-7B-Chat-GPTQ": | |
return "[INST] <<SYS>>\nYou are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.\n<</SYS>>\n{prompt}[/INST]" | |
if model_name == "TheBloke/meditron-7B-GPTQ" or model_name == "TheBloke/meditron-70B-GPTQ": | |
return '''<|im_start|>system | |
{system_message}<|im_end|> | |
<|im_start|>user | |
{prompt}<|im_end|> | |
<|im_start|>assistant''' | |
return "" | |
def format_prompt(template, system_message, prompt): | |
if template == "": | |
return f"{system_message} {prompt}" | |
return template.format(system_message=system_message, prompt=prompt) | |
def display_llm_output(): | |
st.header("LLM") | |
form = st.form('llm') | |
prompt_format_str = get_prompt_format(st.session_state["model_name_or_path"]) | |
prompt_format = form.text_area('Prompt format', value=prompt_format_str) | |
system_prompt = form.text_area('System prompt', value=st.session_state["system_prompt"]) | |
prompt = form.text_area('Prompt', value=st.session_state["prompt"]) | |
submitted = form.form_submit_button('Submit') | |
if submitted: | |
formatted_prompt = format_prompt(prompt_format, system_prompt, prompt) | |
print(f"Formatted prompt: {format_prompt}") | |
llm_response = get_llm_response( | |
st.session_state["model_name"], | |
st.session_state["temperature"], | |
st.session_state["do_sample"], | |
st.session_state["top_p"], | |
st.session_state["top_k"], | |
st.session_state["max_new_tokens"], | |
st.session_state["repetition_penalty"], | |
formatted_prompt) | |
st.write(llm_response) | |
st.write('Done displaying LLM response') | |
def main(): | |
print('Running Local LLM PoC Streamlit app...') | |
session_inactive_info = st.empty() | |
if "session_started" not in st.session_state or not st.session_state["session_started"]: | |
init_session_state() | |
display_streamlit_sidebar() | |
else: | |
display_streamlit_sidebar() | |
session_inactive_info.empty() | |
display_llm_output() | |
display_session_overview() | |
if __name__ == '__main__': | |
main() | |