Spaces:
Running
on
L40S
Running
on
L40S
File size: 20,561 Bytes
616f571 f6a2f50 616f571 f6a2f50 616f571 f6a2f50 616f571 f6a2f50 616f571 f6a2f50 616f571 f6a2f50 616f571 f6a2f50 616f571 f6a2f50 616f571 f6a2f50 616f571 f6a2f50 616f571 f6a2f50 616f571 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 |
import torch
from tqdm import tqdm
from transformers import CLIPTextModelWithProjection, CLIPTokenizerFast
from cube3d.inference.logits_postprocesses import process_logits
from cube3d.inference.utils import load_config, load_model_weights, parse_structured
from cube3d.model.autoencoder.one_d_autoencoder import OneDAutoEncoder
from cube3d.model.gpt.dual_stream_roformer import DualStreamRoformer
from cube3d.model.transformers.cache import Cache
class Engine:
def __init__(
self,
config_path: str,
gpt_ckpt_path: str,
shape_ckpt_path: str,
device: torch.device,
):
"""
Initializes the inference engine with the given configuration and checkpoint paths.
Args:
config_path (str): Path to the configuration file.
gpt_ckpt_path (str): Path to the GPT model checkpoint file.
shape_ckpt_path (str): Path to the shape model checkpoint file.
device (torch.device): The device to run the models on (e.g., 'cpu' or 'cuda').
Attributes:
cfg (dict): Loaded configuration from the config file.
device (torch.device): The device to run the models on.
gpt_model (DualStreamRoformer): The GPT model initialized and loaded with weights.
shape_model (OneDAutoEncoder): The shape model initialized and loaded with weights.
text_model (CLIPTextModelWithProjection): The text model initialized from a pretrained model.
text_tokenizer (CLIPTokenizerFast): The tokenizer for the text model.
max_new_tokens (int): Maximum number of new tokens for the shape model.
min_id (int): Minimum ID for the shape model codes.
max_id (int): Maximum ID for the shape model codes.
"""
self.cfg = load_config(config_path)
self.device = device
self.gpt_model = DualStreamRoformer(
parse_structured(DualStreamRoformer.Config, self.cfg.gpt_model)
)
load_model_weights(
self.gpt_model,
gpt_ckpt_path,
)
self.gpt_model = self.gpt_model.eval().to(self.device)
self.shape_model = OneDAutoEncoder(
parse_structured(OneDAutoEncoder.Config, self.cfg.shape_model)
)
load_model_weights(
self.shape_model,
shape_ckpt_path,
)
self.shape_model = self.shape_model.eval().to(self.device)
# copy vq codebook to gpt
with torch.no_grad():
codebook = self.shape_model.bottleneck.block.get_codebook()
codebook = self.gpt_model.shape_proj(codebook).detach()
self.gpt_model.transformer.wte.weight.data[: codebook.shape[0]] = codebook
self.text_model = CLIPTextModelWithProjection.from_pretrained(
self.cfg.text_model_pretrained_model_name_or_path,
force_download=False,
device_map=self.device,
).eval()
self.text_tokenizer = CLIPTokenizerFast.from_pretrained(
self.cfg.text_model_pretrained_model_name_or_path
)
self.max_new_tokens = self.shape_model.cfg.num_encoder_latents
self.min_id = 0
self.max_id = self.shape_model.cfg.num_codes
@torch.inference_mode()
def prepare_inputs(self, prompts: list[str], guidance_scale: float):
"""
Prepares the input embeddings for the model based on the provided prompts and guidance scale.
Args:
prompts (list[str]): A list of prompt strings to be encoded.
guidance_scale (float): A scaling factor for guidance. If greater than 0.0, additional processing is applied.
Returns:
tuple: A tuple containing:
- embed (torch.Tensor): The encoded input embeddings.
- cond (torch.Tensor): The condition embeddings, which may include unconditional embeddings if guidance_scale is greater than 0.0.
"""
prompt_embeds = self.run_clip(prompts)
with torch.autocast(self.device.type, dtype=torch.bfloat16):
embed = self.encode_input(prompt_embeds, self.gpt_model.shape_bos_id)
cond = prompt_embeds
if guidance_scale > 0.0:
embed = torch.cat([embed, embed], dim=0)
uncond_embeds = self.run_clip([""] * len(prompts))
cond = torch.cat([prompt_embeds, uncond_embeds], dim=0)
return embed, cond
@torch.inference_mode()
def run_clip(self, text_inputs):
"""
Processes the given text inputs using a text tokenizer and a text model, and returns the encoded text embeddings.
Args:
text_inputs (str or List[str]): The input text or list of texts to be processed.
Returns:
torch.Tensor: The encoded text embeddings.
"""
text_inputs = self.text_tokenizer(
text_inputs,
max_length=self.text_tokenizer.model_max_length,
padding="max_length",
truncation=True,
return_tensors="pt",
)
with torch.no_grad():
text_inputs = {k: v.to(self.device) for k, v in text_inputs.items()}
# use full precision for text encoder
with torch.autocast(device_type=self.device.type, enabled=False):
encoded = self.text_model(**text_inputs)
if self.gpt_model.cfg.use_pooled_text_embed:
embed = encoded.text_embeds.unsqueeze(1) # [bs, 1, 512]
else:
embed = encoded.last_hidden_state # [bs, 77, 512]
embed = self.gpt_model.encode_text(embed)
return embed
@torch.inference_mode()
def encode_input(self, inputs: torch.Tensor, bos: int):
"""
Encodes the beginning of sequence (BOS) token for the given input tensor.
Args:
inputs (torch.Tensor): The input tensor containing sequences.
bos (int): The beginning of sequence token ID.
Returns:
torch.Tensor: The encoded BOS token embeddings.
"""
b = inputs.shape[0]
bos_embed = self.gpt_model.encode_token(
torch.full(
(b, 1),
fill_value=bos,
dtype=torch.long,
device=self.device,
)
)
return bos_embed
@torch.inference_mode()
def run_gpt(
self,
prompts: list[str],
use_kv_cache: bool,
guidance_scale: float = 3.0,
top_p: float = None,
):
"""
Generates text using a GPT model based on the provided prompts.
Args:
prompts (list[str]): A list of input prompts to generate text from.
use_kv_cache (bool): Whether to use key-value caching for faster generation.
guidance_scale (float, optional): The scale for guidance during generation. Default is 3.0.
top_p (float, optional): The cumulative probability threshold for nucleus sampling.
If None, argmax selection is performed (deterministic generation). Otherwise, smallest set of tokens with cumulative probability ≥ top_p are kept (stochastic generation).
Returns:
torch.Tensor: A tensor containing the generated token IDs.
"""
embed, cond = self.prepare_inputs(prompts, guidance_scale)
output_ids = []
batch_size, input_seq_len, dim = embed.shape
max_seq_len = input_seq_len + self.max_new_tokens
embed_buffer = torch.zeros(
(batch_size, max_seq_len, dim), dtype=embed.dtype, device=embed.device
)
embed_buffer[:, :input_seq_len, :].copy_(embed)
cond_len = cond.shape[1]
kv_cache = None
if use_kv_cache:
kv_cache = self.gpt_model.init_kv_cache(
batch_size,
cond_len,
self.max_new_tokens + 1, # +1 for the BOS token
torch.bfloat16,
embed.device,
)
with torch.autocast(self.device.type, dtype=torch.bfloat16):
for i in tqdm(range(self.max_new_tokens), desc=f"generating"):
curr_pos_id = torch.tensor([i], dtype=torch.long, device=embed.device)
logits = self.gpt_model(
embed_buffer,
cond,
kv_cache=kv_cache,
curr_pos_id=curr_pos_id if use_kv_cache else None,
decode=(i > 0) if use_kv_cache else False,
)
if use_kv_cache:
logits = logits[:, 0, ...]
else:
logits = logits[:, i, ...]
logits = logits[..., self.min_id : self.max_id]
if guidance_scale > 0.0:
logits, uncond_logits = logits.float().chunk(2, dim=0)
gamma = (
guidance_scale * (self.max_new_tokens - i) / self.max_new_tokens
)
logits = (1 + gamma) * logits - gamma * uncond_logits
next_id = process_logits(
logits,
top_p=top_p,
)
output_ids.append(next_id)
next_embed = self.gpt_model.encode_token(next_id)
if guidance_scale > 0.0:
next_embed = torch.cat([next_embed, next_embed], dim=0)
embed_buffer[:, i + input_seq_len, :].copy_(next_embed.squeeze(1))
return torch.cat(output_ids, dim=1)
@torch.inference_mode()
def run_shape_decode(
self,
output_ids: torch.Tensor,
resolution_base: float = 8.0,
chunk_size: int = 100_000,
):
"""
Decodes the shape from the given output IDs and extracts the geometry.
Args:
output_ids (torch.Tensor): The tensor containing the output IDs.
resolution_base (float, optional): The base resolution for geometry extraction. Defaults to 8.43.
chunk_size (int, optional): The chunk size for processing. Defaults to 100,000.
Returns:
tuple: A tuple containing the vertices and faces of the mesh.
"""
shape_ids = (
output_ids[:, : self.shape_model.cfg.num_encoder_latents, ...]
.clamp_(0, self.shape_model.cfg.num_codes - 1)
.view(-1, self.shape_model.cfg.num_encoder_latents)
)
latents = self.shape_model.decode_indices(shape_ids)
mesh_v_f, _ = self.shape_model.extract_geometry(
latents,
resolution_base=resolution_base,
chunk_size=chunk_size,
use_warp=True,
)
return mesh_v_f
@torch.inference_mode()
def t2s(
self,
prompts: list[str],
use_kv_cache: bool,
guidance_scale: float = 3.0,
resolution_base: float = 8.0,
chunk_size: int = 100_000,
top_p: float = None,
):
"""
Generates a 3D mesh from text prompts using a GPT model and shape decoder.
Args:
prompts (list[str]): A list of text prompts to guide the generation.
use_kv_cache (bool): Whether to use key-value caching for the GPT model.
guidance_scale (float, optional): The scale of guidance for the GPT model. Default is 3.0.
resolution_base (float, optional): The base resolution for the shape decoder. Default is 8.0.
chunk_size (int, optional): The chunk size for processing the shape decoding. Default is 100,000.
top_p (float, optional): The cumulative probability threshold for nucleus sampling.
If None, argmax selection is performed (deterministic generation). Otherwise, smallest set of tokens with cumulative probability ≥ top_p are kept (stochastic generation).
Returns:
mesh_v_f: The generated 3D mesh vertices and faces.
"""
output_ids = self.run_gpt(prompts, use_kv_cache, guidance_scale, top_p)
with torch.autocast(self.device.type, dtype=torch.bfloat16):
mesh_v_f = self.run_shape_decode(output_ids, resolution_base, chunk_size)
return mesh_v_f
class EngineFast(Engine):
def __init__(
self,
config_path: str,
gpt_ckpt_path: str,
shape_ckpt_path: str,
device: torch.device,
):
"""
Initializes the inference engine with the given configuration and checkpoint paths.
Args:
config_path (str): Path to the configuration file.
gpt_ckpt_path (str): Path to the GPT checkpoint file.
shape_ckpt_path (str): Path to the shape checkpoint file.
device (torch.device): The device to run the inference on (e.g., CPU or CUDA).
"""
super().__init__(config_path, gpt_ckpt_path, shape_ckpt_path, device)
# CUDA Graph params
self.graph = torch.cuda.CUDAGraph()
self.embed_buffer = torch.Tensor()
self.cond_buffer = torch.Tensor()
self.logits_buffer = torch.Tensor()
self.curr_pos_id = torch.tensor([0], dtype=torch.long, device=self.device)
self.kv_cache: list[Cache] = []
self._warmup_and_capture_graph()
def _warmup_and_capture_graph(self):
"""
Warms up the model by running a series of forward passes and captures the CUDA graph for efficient execution.
This method performs the following steps:
1. Prepares the input embeddings and conditions using a warmup prompt.
2. Initializes buffers for embeddings and conditions.
3. Initializes the key-value cache for the GPT model.
4. Runs a series of warmup passes to prefill the model and generate logits.
5. Captures the CUDA graph for the model's forward pass to optimize future executions.
"""
warmup_prompt = "A cube"
embed, cond = self.prepare_inputs([warmup_prompt], guidance_scale=3.0)
batch_size, input_seq_len, dim = embed.shape
max_seq_len = input_seq_len + self.max_new_tokens
self.embed_buffer = torch.zeros(
(batch_size, max_seq_len, dim), dtype=embed.dtype, device=self.device
)
self.embed_buffer[:, :input_seq_len, :].copy_(embed)
self.cond_buffer = torch.empty_like(cond)
self.cond_buffer.copy_(cond)
cond_len = self.cond_buffer.shape[1]
# Initialize kv_cache for the first time
self.kv_cache = self.gpt_model.init_kv_cache(
batch_size,
cond_len,
self.max_new_tokens + 1, # +1 for the BOS token
torch.bfloat16,
self.device,
)
num_warmup_passes = 10
with torch.autocast(self.device.type, dtype=torch.bfloat16):
self._set_curr_pos_id(0)
_ = self._prefill_and_return_logits()
for x in range(1, num_warmup_passes):
self._set_curr_pos_id(x)
self.logits_buffer = self.gpt_model(
embed=self.embed_buffer,
cond=self.cond_buffer,
kv_cache=self.kv_cache,
curr_pos_id=self.curr_pos_id,
decode=True,
)
side_stream = torch.cuda.Stream(device=self.device)
with torch.cuda.graph(self.graph, stream=side_stream):
with torch.autocast(self.device.type, dtype=torch.bfloat16):
self.logits_buffer = self.gpt_model(
embed=self.embed_buffer,
cond=self.cond_buffer,
kv_cache=self.kv_cache,
curr_pos_id=self.curr_pos_id,
decode=True,
)
def _reset_kv_cache(self):
"""
Resets the key-value cache by setting all key and value states to zero.
This method iterates through each cache in the `kv_cache` attribute and
calls the `zero_()` method on both `key_states` and `value_states` to
reset them to their initial state.
"""
for cache in self.kv_cache:
cache.key_states.zero_()
cache.value_states.zero_()
def _prefill_and_return_logits(self) -> torch.Tensor:
"""
Prefills the model's key-value cache and returns the logits.
This method resets the key-value cache and then performs a forward pass
through the GPT model in eager mode to prefill the logits.
Returns:
torch.Tensor: The prefilled logits tensor with the first dimension removed.
"""
self._reset_kv_cache()
# Prefill is always eager
prefill_logits = self.gpt_model(
embed=self.embed_buffer,
cond=self.cond_buffer,
kv_cache=self.kv_cache,
curr_pos_id=self.curr_pos_id,
decode=False,
)
return prefill_logits[:, 0, ...]
def _set_curr_pos_id(self, pos: int):
"""
Set the current position ID.
This method updates the `curr_pos_id` attribute with the given position.
Args:
pos (int): The position ID to set.
"""
self.curr_pos_id.copy_(
torch.tensor([pos], dtype=torch.long, device=self.device)
)
def run_gpt(
self,
prompts: list[str],
use_kv_cache: bool,
guidance_scale: float = 3.0,
top_p: float = None
):
"""
Runs the GPT model to generate text based on the provided prompts.
Args:
prompts (list[str]): A list of input prompts for the GPT model. Only a single prompt is supported.
use_kv_cache (bool): Flag indicating whether to use key-value caching. (Currently not used)
guidance_scale (float, optional): The scale factor for guidance. Default is 3.0.
top_p (float, optional): The cumulative probability threshold for nucleus sampling.
If None, argmax selection is performed. Otherwise, smallest set of tokens with cumulative probability ≥ top_p are kept.
Returns:
torch.Tensor: A tensor containing the generated output token IDs.
Raises:
AssertionError: If the batch size is greater than 1.
"""
embed, cond = self.prepare_inputs(prompts, guidance_scale)
assert len(prompts) == 1, "batch size > 1 not support for EngineFast"
batch_size, input_seq_len, _ = embed.shape
self.embed_buffer.zero_()
self.embed_buffer[:, :input_seq_len, :].copy_(embed)
assert self.cond_buffer.shape == cond.shape
self.cond_buffer.copy_(cond)
output_ids = torch.zeros(
(batch_size // 2, self.max_new_tokens), dtype=torch.int, device=self.device
)
with torch.autocast(self.device.type, dtype=torch.bfloat16):
self._set_curr_pos_id(0)
logits = self._prefill_and_return_logits()
logits = logits[..., self.min_id : self.max_id]
if guidance_scale > 0.0:
logits, uncond_logits = logits.float().chunk(2, dim=0)
gamma = guidance_scale
logits = (1 + gamma) * logits - gamma * uncond_logits
next_id = process_logits(logits, top_p=top_p)
output_ids[:, 0] = next_id.squeeze()
next_embed = self.gpt_model.encode_token(next_id)
next_embed = next_embed.repeat(2, 1, 1)
self.embed_buffer[:, input_seq_len, :].copy_(next_embed.squeeze(1))
for i in tqdm(
range(1, self.max_new_tokens), desc=f"generating"
):
self._set_curr_pos_id(i)
self.graph.replay()
logits = self.logits_buffer[:, 0, ...]
logits = logits[..., self.min_id : self.max_id]
if guidance_scale > 0.0:
logits, uncond_logits = logits.float().chunk(2, dim=0)
gamma = (
guidance_scale * (self.max_new_tokens - i) / self.max_new_tokens
)
logits = (1 + gamma) * logits - gamma * uncond_logits
next_id = process_logits(logits, top_p=top_p)
output_ids[:, i] = next_id.squeeze()
next_embed = self.gpt_model.encode_token(next_id)
next_embed = next_embed.repeat(2, 1, 1)
self.embed_buffer[:, i + input_seq_len, :].copy_(next_embed.squeeze(1))
return output_ids
|