Spaces:
Running
on
L40S
Running
on
L40S
File size: 26,074 Bytes
616f571 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 |
import logging
import sys
from dataclasses import dataclass, field
from functools import partial
from typing import List, Optional, Tuple
import numpy as np
import torch
import torch.nn as nn
from skimage import measure
from torch.nn import functional as F
from tqdm import tqdm
from cube3d.model.autoencoder.embedder import PhaseModulatedFourierEmbedder
from cube3d.model.autoencoder.grid import (
generate_dense_grid_points,
marching_cubes_with_warp,
)
from cube3d.model.autoencoder.spherical_vq import SphericalVectorQuantizer
from cube3d.model.transformers.attention import (
EncoderCrossAttentionLayer,
EncoderLayer,
init_linear,
init_tfixup,
)
from cube3d.model.transformers.norm import LayerNorm
def init_sort(x):
"""
Sorts the input tensor `x` based on its pairwise distances to the first element.
This function computes the pairwise distances between all elements in `x` and the
first element of `x`. It then sorts the elements of `x` in ascending order of
their distances to the first element.
Args:
x (torch.Tensor): A 2D tensor where each row represents a data point.
Returns:
torch.Tensor: A tensor containing the rows of `x` sorted by their distances
to the first row of `x`.
"""
distances = torch.cdist(x, x[:1])
_, indices = torch.sort(distances.squeeze(), dim=0)
x = x[indices]
return x
class MLPEmbedder(nn.Module):
def __init__(self, in_dim: int, embed_dim: int, bias: bool = True):
super().__init__()
self.in_layer = nn.Linear(in_dim, embed_dim, bias=bias)
self.silu = nn.SiLU()
self.out_layer = nn.Linear(embed_dim, embed_dim, bias=bias)
self.apply(partial(init_linear, embed_dim=embed_dim))
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.out_layer(self.silu(self.in_layer(x)))
class OneDEncoder(nn.Module):
def __init__(
self,
embedder,
num_latents: int,
point_feats: int,
embed_point_feats: bool,
width: int,
num_heads: int,
num_layers: int,
with_cls_token: bool = False,
cross_attention_levels: Optional[List[int]] = None,
eps: float = 1e-6,
) -> None:
"""
Initializes the OneDEncoder model.
Args:
embedder: An embedding module that provides the input embedding functionality.
num_latents (int): The number of latent variables.
point_feats (int): The number of point features.
embed_point_feats (bool): Whether to embed point features or not.
width (int): The width of the embedding dimension.
num_heads (int): The number of attention heads.
num_layers (int): The number of encoder layers.
with_cls_token (bool, optional): Whether to include a classification token like in Vision Transformers (ViT). Defaults to False.
cross_attention_levels (Optional[List[int]], optional): The indices of layers where cross-attention is applied. Defaults to None.
eps (float, optional): A small value added for numerical stability in normalization layers. Defaults to 1e-6.
Returns:
None
"""
super().__init__()
self.embedder = embedder
# add cls token like ViT
self.with_cls_token = with_cls_token
if self.with_cls_token:
query = torch.empty((1 + num_latents, width))
else:
query = torch.empty((num_latents, width))
# initialize then sort query to potentially get better ordering
query.uniform_(-1.0, 1.0)
query = init_sort(query)
# set parameter
self.query = nn.Parameter(query)
self.embed_point_feats = embed_point_feats
in_dim = (
self.embedder.out_dim * 2
if self.embed_point_feats
else self.embedder.out_dim + point_feats
)
self.feat_in = MLPEmbedder(in_dim, embed_dim=width)
if cross_attention_levels is None:
cross_attention_levels = [0]
self.blocks = nn.ModuleList()
for i in range(num_layers):
if i in cross_attention_levels:
self.blocks.append(
EncoderCrossAttentionLayer(
embed_dim=width,
num_heads=num_heads,
eps=eps,
)
)
else:
self.blocks.append(
EncoderLayer(embed_dim=width, num_heads=num_heads, eps=eps)
)
self.ln_f = LayerNorm(width, eps=eps)
init_tfixup(self, num_layers)
def _forward(self, h, data, attn_mask=None):
"""
Forward pass for the autoencoder model.
Args:
h (torch.Tensor): The input tensor to be processed, typically representing
the hidden state or intermediate representation.
data (torch.Tensor): The input data tensor to be transformed by the feature
extraction layer and used in cross-attention layers.
attn_mask (torch.Tensor, optional): An optional attention mask tensor to be
used in attention layers for masking specific positions. Defaults to None.
Returns:
torch.Tensor: The output tensor after processing through the layers and
applying final normalization.
"""
data = self.feat_in(data)
for block in self.blocks:
if isinstance(block, EncoderCrossAttentionLayer):
h = block(h, data)
else:
h = block(h, attn_mask=attn_mask)
h = self.ln_f(h)
return h
def forward(
self, pts: torch.Tensor, feats: torch.Tensor
) -> Tuple[torch.Tensor, list[torch.Tensor]]:
"""
Forward pass of the 1D autoencoder model.
Args:
pts (torch.Tensor): Input tensor representing points with shape (batch_size, num_points, point_dim).
feats (torch.Tensor): Input tensor representing features with shape (batch_size, num_points, feature_dim).
Can be None if no features are provided.
Returns:
Tuple[torch.Tensor, list[torch.Tensor]]:
- The output tensor after processing the input data.
- A list of intermediate tensors (if applicable) generated during the forward pass.
"""
b = pts.shape[0]
data = self.embedder(pts)
if feats is not None:
if self.embed_point_feats:
feats = self.embedder(feats)
data = torch.cat([data, feats], dim=-1)
# prepare query and data
h = self.query.unsqueeze(0).expand(b, -1, -1)
return self._forward(h, data, attn_mask=None)
class OneDBottleNeck(nn.Module):
def __init__(
self,
block,
) -> None:
"""
Initializes the OneDBottleNeck class.
Args:
block: The building block or module used within the autoencoder.
"""
super().__init__()
self.block = block
def forward(self, h: torch.Tensor) -> Tuple[torch.Tensor, dict]:
"""
Forward pass of the OneDBottleNeck function.
Args:
h (torch.Tensor): Input tensor to the model.
Returns:
Tuple[torch.Tensor, dict]: A tuple containing:
- The transformed tensor `z` after passing through the block (if applicable).
- A dictionary `ret_dict` containing additional information:
- "indices": Indices from the block output (if present).
- "z_q": Quantized tensor from the block output (if present).
"""
z = h
ret_dict = {}
if self.block is not None:
z, d = self.block(z)
key_mappings = {
"q": "indices",
"z_q": "z_q",
}
for in_key, out_key in key_mappings.items():
if in_key in d:
ret_dict[out_key] = d[in_key]
return z, ret_dict
class OneDDecoder(nn.Module):
def __init__(
self,
num_latents: int,
width: int,
num_heads: int,
num_layers: int,
eps: float = 1e-6,
) -> None:
"""
Initializes the OneDDecoder class.
Args:
num_latents (int): The number of latent variables.
width (int): The width of the embedding dimension.
num_heads (int): The number of attention heads in each encoder layer.
num_layers (int): The number of encoder layers.
eps (float, optional): A small value added for numerical stability. Defaults to 1e-6.
"""
super().__init__()
self.register_buffer("query", torch.empty([0, width]), persistent=False)
self.positional_encodings = nn.Parameter(
init_sort(F.normalize(torch.empty(num_latents, width).normal_()))
)
self.blocks = nn.ModuleList(
[
EncoderLayer(embed_dim=width, num_heads=num_heads, eps=eps)
for _ in range(num_layers)
]
)
init_tfixup(self, num_layers)
def _forward(self, h):
"""
Applies a sequence of operations to the input tensor `h` using the blocks
defined in the model.
Args:
h (torch.Tensor): The input tensor to be processed by the blocks.
Returns:
torch.Tensor: The output tensor after applying all blocks sequentially.
"""
for block in self.blocks:
h = block(h)
return h
def forward(self, z):
"""
This method processes the input tensor `z` by padding it to a fixed length,
adding positional encodings, and then passing it through the `_forward` method.
Args:
z (torch.Tensor): Input tensor.
Returns:
torch.Tensor: Output tensor after processing through the autoencoder.
Notes:
- If the `query` attribute has a non-zero shape, the input tensor `z` is padded
to match the required length using slices of `query`.
- Positional encodings are added to the padded input tensor before passing it
to the `_forward` method.
"""
# pad input to fixed length
if self.query.shape[0] > 0:
pad_len = self.query.shape[0] + 1 - z.shape[1]
paddings = self.query[:pad_len, ...].unsqueeze(0).expand(z.shape[0], -1, -1)
z = torch.cat([paddings, z], dim=1)
h = z + self.positional_encodings[: z.shape[1], :].unsqueeze(0).expand(
z.shape[0], -1, -1
)
return self._forward(h)
class OneDOccupancyDecoder(nn.Module):
def __init__(
self, embedder, out_features: int, width: int, num_heads: int, eps=1e-6
) -> None:
"""
Initializes the OneDOccupancyDecoder module.
Args:
embedder: An embedding module that provides input embeddings.
out_features (int): The number of output features for the final linear layer.
width (int): The width of the intermediate layers.
num_heads (int): The number of attention heads for the cross-attention layer.
eps (float, optional): A small value added for numerical stability in layer normalization. Defaults to 1e-6.
"""
super().__init__()
self.embedder = embedder
self.query_in = MLPEmbedder(self.embedder.out_dim, width)
self.attn_out = EncoderCrossAttentionLayer(embed_dim=width, num_heads=num_heads)
self.ln_f = LayerNorm(width, eps=eps)
self.c_head = nn.Linear(width, out_features)
def query(self, queries: torch.Tensor):
"""
Processes the input tensor through the embedder and query_in layers.
Args:
queries (torch.Tensor): A tensor containing the input data to be processed.
Returns:
torch.Tensor: The output tensor after being processed by the embedder and query_in layers.
"""
return self.query_in(self.embedder(queries))
def forward(self, queries: torch.Tensor, latents: torch.Tensor):
"""
Defines the forward pass of the model.
Args:
queries (torch.Tensor): Input tensor representing the queries.
latents (torch.Tensor): Input tensor representing the latent representations.
Returns:
torch.Tensor: Output tensor after applying the query transformation,
attention mechanism, and final processing layers.
"""
queries = self.query(queries)
x = self.attn_out(queries, latents)
x = self.c_head(self.ln_f(x))
return x
class OneDAutoEncoder(nn.Module):
@dataclass
class Config:
checkpoint_path: str = ""
# network params
num_encoder_latents: int = 256
num_decoder_latents: int = 256
embed_dim: int = 12
width: int = 768
num_heads: int = 12
out_dim: int = 1
eps: float = 1e-6
# grid features embedding
num_freqs: int = 128
point_feats: int = 0
embed_point_feats: bool = False
num_encoder_layers: int = 1
encoder_cross_attention_levels: list[int] = field(default_factory=list)
num_decoder_layers: int = 23
encoder_with_cls_token: bool = True
num_codes: int = 16384
def __init__(self, cfg: Config) -> None:
"""
Initializes the OneDAutoencoder model.
Args:
cfg (Config): Configuration object containing the parameters for the model.
Attributes:
cfg (Config): Stores the configuration object.
embedder (PhaseModulatedFourierEmbedder): Embeds input data using phase-modulated Fourier features.
encoder (OneDEncoder): Encodes the input data into latent representations.
bottleneck (OneDBottleNeck): Bottleneck layer containing a spherical vector quantizer for dimensionality reduction.
decoder (OneDDecoder): Decodes latent representations back into the original data space.
occupancy_decoder (OneDOccupancyDecoder): Decodes occupancy information from latent representations.
"""
super().__init__()
self.cfg = cfg
self.embedder = PhaseModulatedFourierEmbedder(
num_freqs=self.cfg.num_freqs, input_dim=3
)
self.encoder = OneDEncoder(
embedder=self.embedder,
num_latents=self.cfg.num_encoder_latents,
with_cls_token=self.cfg.encoder_with_cls_token,
point_feats=self.cfg.point_feats,
embed_point_feats=self.cfg.embed_point_feats,
width=self.cfg.width,
num_heads=self.cfg.num_heads,
num_layers=self.cfg.num_encoder_layers,
cross_attention_levels=self.cfg.encoder_cross_attention_levels,
eps=self.cfg.eps,
)
block = SphericalVectorQuantizer(
self.cfg.embed_dim,
self.cfg.num_codes,
self.cfg.width,
codebook_regularization="kl",
)
self.bottleneck = OneDBottleNeck(block=block)
self.decoder = OneDDecoder(
num_latents=self.cfg.num_encoder_latents,
width=self.cfg.width,
num_heads=self.cfg.num_heads,
num_layers=self.cfg.num_decoder_layers,
eps=self.cfg.eps,
)
self.occupancy_decoder = OneDOccupancyDecoder(
embedder=self.embedder,
out_features=self.cfg.out_dim,
width=self.cfg.width,
num_heads=self.cfg.num_heads,
eps=self.cfg.eps,
)
@torch.no_grad()
def decode_indices(self, shape_ids: torch.Tensor):
"""
Decodes the given shape indices into latent representations.
Args:
shape_ids (torch.Tensor): A tensor containing the shape indices to be decoded.
Returns:
torch.Tensor: The decoded latent representations corresponding to the input shape indices.
"""
z_q = self.bottleneck.block.lookup_codebook(shape_ids)
latents = self.decode(z_q)
return latents
@torch.no_grad()
def query_embeds(self, shape_ids: torch.Tensor):
"""
Retrieves the latent embeddings corresponding to the given shape IDs.
Args:
shape_ids (torch.Tensor): A tensor containing the IDs of the shapes
for which the latent embeddings are to be queried.
Returns:
torch.Tensor: A tensor containing the latent embeddings retrieved
from the codebook for the provided shape IDs.
"""
z_q = self.bottleneck.block.lookup_codebook_latents(shape_ids)
return z_q
@torch.no_grad()
def query_indices(self, shape_embs: torch.Tensor):
"""
Queries the indices of the quantized embeddings from the bottleneck layer.
Args:
shape_embs (torch.Tensor): The input tensor containing shape embeddings
to be quantized.
Returns:
torch.Tensor: A tensor containing the quantized indices.
"""
_, ret_dict = self.bottleneck.block.quantize(shape_embs)
return ret_dict["q"]
def encode(self, x: torch.Tensor, **kwargs):
"""
Encodes the input tensor using the encoder and bottleneck layers.
Args:
x (torch.Tensor): Input tensor with shape (..., N), where the first 3
dimensions represent points (pts) and the remaining dimensions
represent features (feats).
**kwargs: Additional keyword arguments.
Returns:
Tuple[torch.Tensor, torch.Tensor, None, dict]: A tuple containing:
- z_e (torch.Tensor): Encoded tensor before bottleneck processing.
- z (torch.Tensor): Encoded tensor after bottleneck processing.
- None: Placeholder for compatibility with other methods.
- d (dict): Dictionary containing additional information, including:
- "z_cls" (torch.Tensor, optional): Class token if
`self.cfg.encoder_with_cls_token` is True.
"""
pts, feats = x[..., :3], x[..., 3:]
z_e = self.encoder(pts, feats)
# split class token
if self.cfg.encoder_with_cls_token:
z_cls = z_e[:, 0, ...]
z_e = z_e[:, 1:, ...]
# quantize or kl
z, d = self.bottleneck(z_e)
if self.cfg.encoder_with_cls_token:
d["z_cls"] = z_cls
return z_e, z, None, d
def decode(self, z: torch.Tensor):
"""
Decodes the latent representation `z` using the decoder network.
Args:
z (torch.Tensor): The latent representation tensor to be decoded.
Returns:
torch.Tensor: The decoded output tensor.
"""
h = self.decoder(z)
return h
def query(self, queries: torch.Tensor, latents: torch.Tensor):
"""
Computes the logits by decoding the given queries and latent representations.
Args:
queries (torch.Tensor): A tensor containing the query points to be decoded.
latents (torch.Tensor): A tensor containing the latent representations corresponding to the queries.
Returns:
torch.Tensor: A tensor containing the decoded logits for the given queries and latents.
"""
logits = self.occupancy_decoder(queries, latents).squeeze(-1)
return logits
def forward(self, surface, queries, **kwargs):
"""
Perform a forward pass through the autoencoder model.
Args:
surface (torch.Tensor): The input surface tensor to be encoded.
queries (torch.Tensor): The query tensor used for generating logits.
**kwargs: Additional keyword arguments.
Returns:
tuple: A tuple containing:
- z (torch.Tensor): The latent representation of the input surface.
- latents (torch.Tensor): The decoded output from the latent representation.
- None: Placeholder for a potential future return value.
- logits (torch.Tensor): The logits generated from the queries and latents.
- d (torch.Tensor): Additional output from the encoding process.
"""
_, z, _, d = self.encode(surface)
latents = self.decode(z)
logits = self.query(queries, latents)
return z, latents, None, logits, d
@torch.no_grad()
def extract_geometry(
self,
latents: torch.FloatTensor,
bounds: list[float] = [
-1.05,
-1.05,
-1.05,
1.05,
1.05,
1.05,
],
resolution_base: float = 9.0,
chunk_size: int = 2_000_000,
use_warp: bool = False,
):
"""
Extracts 3D geometry from latent representations using a dense grid sampling
and marching cubes algorithm.
Args:
latents (torch.FloatTensor): A tensor of latent representations with shape
(batch_size, latent_dim).
bounds (list[float], optional): A list of six floats defining the bounding box
for the 3D grid in the format [xmin, ymin, zmin, xmax, ymax, zmax].
Defaults to [-1.05, -1.05, -1.05, 1.05, 1.05, 1.05].
resolution_base (float, optional): The base resolution for the grid. Higher
values result in finer grids. Defaults to 9.0.
chunk_size (int, optional): The number of grid points to process in a single
chunk. Defaults to 2,000,000.
use_warp (bool, optional): Whether to use a GPU-accelerated marching cubes
implementation. If False, falls back to a CPU implementation. Defaults to False.
Returns:
tuple:
- mesh_v_f (list[tuple]): A list of tuples containing vertices and faces
for each batch element. Each tuple is of the form
(vertices, faces), where:
- vertices (np.ndarray): Array of vertex coordinates with shape
(num_vertices, 3).
- faces (np.ndarray): Array of face indices with shape
(num_faces, 3).
If geometry extraction fails for a batch element, the tuple will be
(None, None).
- has_surface (np.ndarray): A boolean array indicating whether a surface
was successfully extracted for each batch element.
Raises:
Exception: Logs warnings or errors if geometry extraction fails for any
batch element or if the marching cubes algorithm encounters issues.
"""
bbox_min = np.array(bounds[0:3])
bbox_max = np.array(bounds[3:6])
bbox_size = bbox_max - bbox_min
xyz_samples, grid_size, length = generate_dense_grid_points(
bbox_min=bbox_min,
bbox_max=bbox_max,
resolution_base=resolution_base,
indexing="ij",
)
xyz_samples = torch.FloatTensor(xyz_samples)
batch_size = latents.shape[0]
batch_logits = []
progress_bar = tqdm(
range(0, xyz_samples.shape[0], chunk_size),
desc=f"extracting geometry",
unit="chunk",
)
for start in progress_bar:
queries = xyz_samples[start : start + chunk_size, :]
num_queries = queries.shape[0]
if start > 0 and num_queries < chunk_size:
queries = F.pad(queries, [0, 0, 0, chunk_size - num_queries])
batch_queries = queries.unsqueeze(0).expand(batch_size, -1, -1).to(latents)
logits = self.query(batch_queries, latents)[:, :num_queries]
batch_logits.append(logits)
grid_logits = (
torch.cat(batch_logits, dim=1)
.detach()
.view((batch_size, grid_size[0], grid_size[1], grid_size[2]))
.float()
)
mesh_v_f = []
has_surface = np.zeros((batch_size,), dtype=np.bool_)
for i in range(batch_size):
try:
warp_success = False
if use_warp:
try:
vertices, faces = marching_cubes_with_warp(
grid_logits[i],
level=0.0,
device=grid_logits.device,
)
warp_success = True
except Exception as e:
logging.warning(
f"Warning: error in marching cubes with warp: {e}"
)
warp_success = False # Fall back to CPU version
if not warp_success:
logging.warning(
"Warning: falling back to CPU version of marching cubes using skimage measure"
)
vertices, faces, _, _ = measure.marching_cubes(
grid_logits[i].cpu().numpy(), 0, method="lewiner"
)
vertices = vertices / grid_size * bbox_size + bbox_min
faces = faces[:, [2, 1, 0]]
mesh_v_f.append(
(vertices.astype(np.float32), np.ascontiguousarray(faces))
)
has_surface[i] = True
except Exception as e:
logging.error(f"Error: error in extract_geometry: {e}")
mesh_v_f.append((None, None))
has_surface[i] = False
return mesh_v_f, has_surface
|