Spaces:
Running
on
L40S
Running
on
L40S
File size: 10,438 Bytes
616f571 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
from dataclasses import dataclass
from typing import Optional
import torch
from torch import nn
from cube3d.model.transformers.cache import Cache
from cube3d.model.transformers.dual_stream_attention import (
DualStreamDecoderLayerWithRotaryEmbedding,
)
from cube3d.model.transformers.norm import LayerNorm
from cube3d.model.transformers.roformer import DecoderLayerWithRotaryEmbedding
from cube3d.model.transformers.rope import precompute_freqs_cis
class DualStreamRoformer(nn.Module):
@dataclass
class Config:
checkpoint_path: str = ""
n_layer: int = 12
n_single_layer: int = 0
rope_theta: float = 1000
n_head: int = 16
n_embd: int = 2048
bias: bool = False # bias in Linears and LayerNorms
eps: float = 1e-6 # Norm eps
shape_model_vocab_size: int = 4096
shape_model_embed_dim: int = 16
text_model_embed_dim: int = 512
use_pooled_text_embed: bool = False
encoder_with_cls_token: bool = True
def __init__(self, cfg: Config) -> None:
"""
Initializes the DualStreamRoFormer model.
Args:
cfg (Config): Configuration object containing model parameters.
Attributes:
cfg (Config): Stores the configuration object.
text_proj (nn.Linear): Linear layer to project text model embeddings to the desired embedding dimension.
shape_proj (nn.Linear, optional): Linear layer to project shape model embeddings to the desired embedding
dimension
vocab_size (int): Vocabulary size for the shape model, including special tokens.
shape_bos_id (int): Token ID for the beginning-of-sequence (BOS) token for the shape model.
shape_eos_id (int): Token ID for the end-of-sequence (EOS) token for the shape model.
padding_id (int): Token ID for the padding token.
transformer (nn.ModuleDict): Dictionary containing the following components:
- wte (nn.Embedding): Embedding layer for the vocabulary.
- dual_blocks (nn.ModuleList): List of dual-stream decoder layers with rotary embeddings.
- single_blocks (nn.ModuleList): List of single-stream decoder layers with rotary embeddings.
- ln_f (LayerNorm): Layer normalization applied to the final output.
lm_head (nn.Linear): Linear layer mapping the final embeddings to the vocabulary size for language modeling.
"""
super().__init__()
self.cfg = cfg
self.text_proj = nn.Linear(
in_features=self.cfg.text_model_embed_dim,
out_features=self.cfg.n_embd,
bias=self.cfg.bias,
)
self.shape_proj = nn.Linear(self.cfg.shape_model_embed_dim, self.cfg.n_embd)
self.vocab_size = self.cfg.shape_model_vocab_size
def add_special_token():
token_id = self.vocab_size
self.vocab_size += 1
return token_id
self.shape_bos_id = add_special_token()
self.shape_eos_id = add_special_token()
self.padding_id = add_special_token()
self.transformer = nn.ModuleDict(
dict(
wte=nn.Embedding(
self.vocab_size,
self.cfg.n_embd,
padding_idx=self.padding_id,
),
dual_blocks=nn.ModuleList(
[
DualStreamDecoderLayerWithRotaryEmbedding.from_config(
self.cfg, cond_pre_only=(i == self.cfg.n_layer - 1)
)
for i in range(self.cfg.n_layer)
]
),
single_blocks=nn.ModuleList(
[
DecoderLayerWithRotaryEmbedding.from_config(self.cfg)
for _ in range(self.cfg.n_single_layer)
]
),
ln_f=LayerNorm(
self.cfg.n_embd, elementwise_affine=False, eps=self.cfg.eps
),
)
)
self.lm_head = nn.Linear(self.cfg.n_embd, self.vocab_size, bias=False)
def encode_text(self, text_embed):
"""
Encodes the given text embeddings by projecting them through a linear transformation.
Args:
text_embed (torch.Tensor): A tensor representing the text embeddings to be encoded.
Returns:
torch.Tensor: The projected text embeddings after applying the linear transformation.
"""
return self.text_proj(text_embed)
def encode_token(self, tokens):
"""
Encodes the input tokens using the word token embedding layer of the transformer model.
Args:
tokens (torch.Tensor): A tensor containing the input tokens to be encoded.
Returns:
torch.Tensor: A tensor containing the encoded token embeddings.
"""
return self.transformer.wte(tokens)
def init_kv_cache(
self,
batch_size: int,
cond_len: int,
max_shape_tokens: int,
dtype: torch.dtype,
device: torch.device,
) -> list[Cache]:
"""
Initializes the key-value cache for the transformer model.
This method creates a list of `Cache` objects to store the key and value
states for both dual-stream and single-stream transformer blocks. The
cache is pre-allocated with zeros and is used to optimize the computation
of attention mechanisms during model inference.
Args:
batch_size (int): The batch size for the input data.
cond_len (int): The length of the conditioning sequence.
max_shape_tokens (int): The maximum number of tokens in the shape sequence.
dtype (torch.dtype): The data type for the tensors (e.g., torch.float32).
device (torch.device): The device on which the tensors will be allocated
(e.g., torch.device('cuda') or torch.device('cpu')).
Returns:
list[Cache]: A list of `Cache` objects containing pre-allocated key and
value states for each transformer block.
"""
num_heads = self.cfg.n_head
max_all_tokens = cond_len + max_shape_tokens
per_head_dim = self.cfg.n_embd // num_heads
kv_cache = [
Cache(
key_states=torch.zeros(
(batch_size, num_heads, max_all_tokens, per_head_dim),
dtype=dtype,
device=device,
),
value_states=torch.zeros(
(batch_size, num_heads, max_all_tokens, per_head_dim),
dtype=dtype,
device=device,
),
)
for _ in range(len(self.transformer.dual_blocks))
]
kv_cache += [
Cache(
key_states=torch.zeros(
(batch_size, num_heads, max_shape_tokens, per_head_dim),
dtype=dtype,
device=device,
),
value_states=torch.zeros(
(batch_size, num_heads, max_shape_tokens, per_head_dim),
dtype=dtype,
device=device,
),
)
for _ in range(len(self.transformer.single_blocks))
]
return kv_cache
def forward(
self,
embed: torch.Tensor,
cond: torch.Tensor,
kv_cache: Optional[list[Cache]] = None,
curr_pos_id: Optional[torch.Tensor] = None,
decode: bool = False,
):
"""
Forward pass for the dual-stream RoFormer model.
Args:
embed (torch.Tensor): The input embedding tensor.
cond (torch.Tensor): The conditioning tensor.
kv_cache (Optional[list[Cache]]): A list of key-value caches for each layer, used for decoding. Default is None.
curr_pos_id (Optional[torch.Tensor]): The current position ID tensor of shape (batch_size,). Required if `decode` is True. Default is None.
decode (bool): Whether the model is in decoding mode. Default is False.
Returns:
torch.Tensor: The output logits tensor.
"""
b, l = embed.shape[:2]
s = cond.shape[1]
device = embed.device
attn_mask = torch.tril(
torch.ones(s + l, s + l, dtype=torch.bool, device=device)
)
position_ids = torch.arange(l, dtype=torch.long, device=device) # shape (t)
position_ids = position_ids.unsqueeze_(0).expand(b, -1)
s_freqs_cis = precompute_freqs_cis(
dim=self.cfg.n_embd // self.cfg.n_head,
t=position_ids,
theta=self.cfg.rope_theta,
)
position_ids = torch.cat(
[
torch.zeros([b, s], dtype=torch.long, device=position_ids.device),
position_ids,
],
dim=1,
)
d_freqs_cis = precompute_freqs_cis(
dim=self.cfg.n_embd // self.cfg.n_head,
t=position_ids,
theta=self.cfg.rope_theta,
)
if kv_cache is not None and decode:
assert curr_pos_id is not None
embed = embed[:, curr_pos_id, :]
h = embed
c = cond
layer_idx = 0
for block in self.transformer.dual_blocks:
h, c = block(
h,
c=c,
freqs_cis=d_freqs_cis,
attn_mask=attn_mask,
is_causal=True,
kv_cache=kv_cache[layer_idx] if kv_cache is not None else None,
curr_pos_id=curr_pos_id + s if curr_pos_id is not None else None,
decode=decode,
)
layer_idx += 1
for block in self.transformer.single_blocks:
h = block(
h,
freqs_cis=s_freqs_cis,
attn_mask=None,
is_causal=True,
kv_cache=kv_cache[layer_idx] if kv_cache is not None else None,
curr_pos_id=curr_pos_id,
decode=decode,
)
layer_idx += 1
# Normalization
h = self.transformer.ln_f(h)
logits = self.lm_head(h)
return logits
|