File size: 10,438 Bytes
616f571
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
from dataclasses import dataclass
from typing import Optional

import torch
from torch import nn

from cube3d.model.transformers.cache import Cache
from cube3d.model.transformers.dual_stream_attention import (
    DualStreamDecoderLayerWithRotaryEmbedding,
)
from cube3d.model.transformers.norm import LayerNorm
from cube3d.model.transformers.roformer import DecoderLayerWithRotaryEmbedding
from cube3d.model.transformers.rope import precompute_freqs_cis


class DualStreamRoformer(nn.Module):
    @dataclass
    class Config:
        checkpoint_path: str = ""
        n_layer: int = 12
        n_single_layer: int = 0
        rope_theta: float = 1000

        n_head: int = 16
        n_embd: int = 2048
        bias: bool = False  # bias in Linears and LayerNorms
        eps: float = 1e-6  # Norm eps

        shape_model_vocab_size: int = 4096
        shape_model_embed_dim: int = 16

        text_model_embed_dim: int = 512
        use_pooled_text_embed: bool = False

        encoder_with_cls_token: bool = True

    def __init__(self, cfg: Config) -> None:
        """
        Initializes the DualStreamRoFormer model.
        Args:
            cfg (Config): Configuration object containing model parameters.
        Attributes:
            cfg (Config): Stores the configuration object.
            text_proj (nn.Linear): Linear layer to project text model embeddings to the desired embedding dimension.
            shape_proj (nn.Linear, optional): Linear layer to project shape model embeddings to the desired embedding
                dimension
            vocab_size (int): Vocabulary size for the shape model, including special tokens.
            shape_bos_id (int): Token ID for the beginning-of-sequence (BOS) token for the shape model.
            shape_eos_id (int): Token ID for the end-of-sequence (EOS) token for the shape model.
            padding_id (int): Token ID for the padding token.
            transformer (nn.ModuleDict): Dictionary containing the following components:
                - wte (nn.Embedding): Embedding layer for the vocabulary.
                - dual_blocks (nn.ModuleList): List of dual-stream decoder layers with rotary embeddings.
                - single_blocks (nn.ModuleList): List of single-stream decoder layers with rotary embeddings.
                - ln_f (LayerNorm): Layer normalization applied to the final output.
            lm_head (nn.Linear): Linear layer mapping the final embeddings to the vocabulary size for language modeling.
        """

        super().__init__()

        self.cfg = cfg

        self.text_proj = nn.Linear(
            in_features=self.cfg.text_model_embed_dim,
            out_features=self.cfg.n_embd,
            bias=self.cfg.bias,
        )

        self.shape_proj = nn.Linear(self.cfg.shape_model_embed_dim, self.cfg.n_embd)

        self.vocab_size = self.cfg.shape_model_vocab_size

        def add_special_token():
            token_id = self.vocab_size
            self.vocab_size += 1
            return token_id

        self.shape_bos_id = add_special_token()
        self.shape_eos_id = add_special_token()
        self.padding_id = add_special_token()

        self.transformer = nn.ModuleDict(
            dict(
                wte=nn.Embedding(
                    self.vocab_size,
                    self.cfg.n_embd,
                    padding_idx=self.padding_id,
                ),
                dual_blocks=nn.ModuleList(
                    [
                        DualStreamDecoderLayerWithRotaryEmbedding.from_config(
                            self.cfg, cond_pre_only=(i == self.cfg.n_layer - 1)
                        )
                        for i in range(self.cfg.n_layer)
                    ]
                ),
                single_blocks=nn.ModuleList(
                    [
                        DecoderLayerWithRotaryEmbedding.from_config(self.cfg)
                        for _ in range(self.cfg.n_single_layer)
                    ]
                ),
                ln_f=LayerNorm(
                    self.cfg.n_embd, elementwise_affine=False, eps=self.cfg.eps
                ),
            )
        )

        self.lm_head = nn.Linear(self.cfg.n_embd, self.vocab_size, bias=False)

    def encode_text(self, text_embed):
        """
        Encodes the given text embeddings by projecting them through a linear transformation.
        Args:
            text_embed (torch.Tensor): A tensor representing the text embeddings to be encoded.
        Returns:
            torch.Tensor: The projected text embeddings after applying the linear transformation.
        """

        return self.text_proj(text_embed)

    def encode_token(self, tokens):
        """
        Encodes the input tokens using the word token embedding layer of the transformer model.
        Args:
            tokens (torch.Tensor): A tensor containing the input tokens to be encoded.
        Returns:
            torch.Tensor: A tensor containing the encoded token embeddings.
        """

        return self.transformer.wte(tokens)

    def init_kv_cache(
        self,
        batch_size: int,
        cond_len: int,
        max_shape_tokens: int,
        dtype: torch.dtype,
        device: torch.device,
    ) -> list[Cache]:
        """
        Initializes the key-value cache for the transformer model.
        This method creates a list of `Cache` objects to store the key and value
        states for both dual-stream and single-stream transformer blocks. The
        cache is pre-allocated with zeros and is used to optimize the computation
        of attention mechanisms during model inference.
        Args:
            batch_size (int): The batch size for the input data.
            cond_len (int): The length of the conditioning sequence.
            max_shape_tokens (int): The maximum number of tokens in the shape sequence.
            dtype (torch.dtype): The data type for the tensors (e.g., torch.float32).
            device (torch.device): The device on which the tensors will be allocated
                (e.g., torch.device('cuda') or torch.device('cpu')).
        Returns:
            list[Cache]: A list of `Cache` objects containing pre-allocated key and
            value states for each transformer block.
        """
        num_heads = self.cfg.n_head
        max_all_tokens = cond_len + max_shape_tokens
        per_head_dim = self.cfg.n_embd // num_heads

        kv_cache = [
            Cache(
                key_states=torch.zeros(
                    (batch_size, num_heads, max_all_tokens, per_head_dim),
                    dtype=dtype,
                    device=device,
                ),
                value_states=torch.zeros(
                    (batch_size, num_heads, max_all_tokens, per_head_dim),
                    dtype=dtype,
                    device=device,
                ),
            )
            for _ in range(len(self.transformer.dual_blocks))
        ]
        kv_cache += [
            Cache(
                key_states=torch.zeros(
                    (batch_size, num_heads, max_shape_tokens, per_head_dim),
                    dtype=dtype,
                    device=device,
                ),
                value_states=torch.zeros(
                    (batch_size, num_heads, max_shape_tokens, per_head_dim),
                    dtype=dtype,
                    device=device,
                ),
            )
            for _ in range(len(self.transformer.single_blocks))
        ]
        return kv_cache

    def forward(
        self,
        embed: torch.Tensor,
        cond: torch.Tensor,
        kv_cache: Optional[list[Cache]] = None,
        curr_pos_id: Optional[torch.Tensor] = None,
        decode: bool = False,
    ):
        """
        Forward pass for the dual-stream RoFormer model.
        Args:
            embed (torch.Tensor): The input embedding tensor.
            cond (torch.Tensor): The conditioning tensor.
            kv_cache (Optional[list[Cache]]): A list of key-value caches for each layer, used for decoding. Default is None.
            curr_pos_id (Optional[torch.Tensor]): The current position ID tensor of shape (batch_size,). Required if `decode` is True. Default is None.
            decode (bool): Whether the model is in decoding mode. Default is False.
        Returns:
            torch.Tensor: The output logits tensor.
        """
        b, l = embed.shape[:2]
        s = cond.shape[1]
        device = embed.device

        attn_mask = torch.tril(
            torch.ones(s + l, s + l, dtype=torch.bool, device=device)
        )

        position_ids = torch.arange(l, dtype=torch.long, device=device)  # shape (t)
        position_ids = position_ids.unsqueeze_(0).expand(b, -1)

        s_freqs_cis = precompute_freqs_cis(
            dim=self.cfg.n_embd // self.cfg.n_head,
            t=position_ids,
            theta=self.cfg.rope_theta,
        )

        position_ids = torch.cat(
            [
                torch.zeros([b, s], dtype=torch.long, device=position_ids.device),
                position_ids,
            ],
            dim=1,
        )
        d_freqs_cis = precompute_freqs_cis(
            dim=self.cfg.n_embd // self.cfg.n_head,
            t=position_ids,
            theta=self.cfg.rope_theta,
        )

        if kv_cache is not None and decode:
            assert curr_pos_id is not None
            embed = embed[:, curr_pos_id, :]

        h = embed
        c = cond

        layer_idx = 0
        for block in self.transformer.dual_blocks:
            h, c = block(
                h,
                c=c,
                freqs_cis=d_freqs_cis,
                attn_mask=attn_mask,
                is_causal=True,
                kv_cache=kv_cache[layer_idx] if kv_cache is not None else None,
                curr_pos_id=curr_pos_id + s if curr_pos_id is not None else None,
                decode=decode,
            )
            layer_idx += 1
        for block in self.transformer.single_blocks:
            h = block(
                h,
                freqs_cis=s_freqs_cis,
                attn_mask=None,
                is_causal=True,
                kv_cache=kv_cache[layer_idx] if kv_cache is not None else None,
                curr_pos_id=curr_pos_id,
                decode=decode,
            )
            layer_idx += 1

        # Normalization
        h = self.transformer.ln_f(h)
        logits = self.lm_head(h)

        return logits