Spaces:
Running
on
L40S
Running
on
L40S
File size: 10,895 Bytes
616f571 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
import math
import torch
import torch.nn as nn
from cube3d.model.transformers.norm import LayerNorm, RMSNorm
def init_linear(module, embed_dim: int):
"""
Initializes the weights and biases of a given linear module.
Args:
module (nn.Module): The module to initialize. Expected to be an instance of nn.Linear.
embed_dim (int): The embedding dimension used to calculate the standard deviation
for weight initialization.
Returns:
None
"""
if isinstance(module, nn.Linear):
nn.init.normal_(module.weight, std=math.sqrt(1.0 / embed_dim))
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
def init_tfixup(module: nn.Module, num_layers: int):
"""Special initialization from https://www.cs.toronto.edu/~mvolkovs/ICML2020_tfixup.pdf
Args:
module (nn.Module): decoder/encoder module
num_layers (int): number of layers in the module
"""
with torch.no_grad():
for pn, p in module.named_parameters():
if (
pn.endswith("c_proj.weight")
or pn.endswith("up_proj.weight")
or pn.endswith("down_proj.weight")
):
p *= (4 * num_layers) ** (-0.25)
elif pn.endswith("c_v.weight"):
p *= (4 * num_layers) ** (-0.25) * math.sqrt(2)
class MLP(nn.Module):
def __init__(self, embed_dim, hidden_dim, bias=True, approximate="none"):
"""
MLP with GELU activation function."
"""
super().__init__()
self.up_proj = nn.Linear(embed_dim, hidden_dim, bias=bias)
self.down_proj = nn.Linear(hidden_dim, embed_dim, bias=bias)
self.act_fn = nn.GELU(approximate=approximate)
def forward(self, x):
return self.down_proj(self.act_fn(self.up_proj(x)))
class SelfAttention(nn.Module):
def __init__(
self,
embed_dim: int,
num_heads: int,
bias: bool = True,
eps: float = 1e-6,
):
"""
Initializes the self attention mechanism.
Args:
embed_dim (int): The dimensionality of the embedding space.
num_heads (int): The number of attention heads.
bias (bool, optional): Whether to include bias terms in the linear layers. Defaults to True.
eps (float, optional): A small value added for numerical stability. Defaults to 1e-6.
Raises:
AssertionError: If `embed_dim` is not divisible by `num_heads`.
"""
super().__init__()
assert embed_dim % num_heads == 0
self.num_heads = num_heads
self.c_qk = nn.Linear(embed_dim, 2 * embed_dim, bias=bias)
self.c_v = nn.Linear(embed_dim, embed_dim, bias=bias)
self.c_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
head_dim = embed_dim // num_heads
self.q_norm = RMSNorm(head_dim)
self.k_norm = RMSNorm(head_dim)
def forward(self, x, attn_mask=None, is_causal: bool = False):
"""
Performs the forward pass of the attention mechanism.
Args:
x (torch.Tensor): Input tensor.
attn_mask (Optional[torch.Tensor]): Attention mask to apply. Default is None.
is_causal (bool): If True, applies a causal mask to prevent attending to future positions.
Default is False.
Returns:
torch.Tensor: Output tensor after applying
the attention mechanism and projection.
"""
b, l, d = x.shape
q, k = self.c_qk(x).chunk(2, dim=-1)
v = self.c_v(x)
q = q.view(b, l, self.num_heads, -1).transpose(1, 2) # (B, nh, T, hs)
k = k.view(b, l, self.num_heads, -1).transpose(1, 2) # (B, nh, T, hs)
v = v.view(b, l, self.num_heads, -1).transpose(1, 2) # (B, nh, T, hs)
q = self.q_norm(q)
k = self.k_norm(k)
is_causal = is_causal and attn_mask is None
y = torch.nn.functional.scaled_dot_product_attention(
q,
k,
v,
attn_mask=attn_mask,
dropout_p=0.0,
is_causal=is_causal,
)
y = y.transpose(1, 2).contiguous().view(b, l, d)
y = self.c_proj(y)
return y
class CrossAttention(nn.Module):
def __init__(
self,
embed_dim: int,
num_heads: int,
q_dim=None,
kv_dim=None,
bias: bool = True,
):
"""
Initializes the cross attention mechanism.
Args:
embed_dim (int): The dimensionality of the embedding space.
num_heads (int): The number of attention heads.
q_dim (int, optional): The dimensionality of the query input. Defaults to `embed_dim`.
kv_dim (int, optional): The dimensionality of the key and value inputs. Defaults to `embed_dim`.
bias (bool, optional): Whether to include a bias term in the linear projections. Defaults to True.
Raises:
AssertionError: If `embed_dim` is not divisible by `num_heads`.
"""
super().__init__()
assert embed_dim % num_heads == 0
q_dim = q_dim or embed_dim
kv_dim = kv_dim or embed_dim
self.c_q = nn.Linear(q_dim, embed_dim, bias=bias)
self.c_k = nn.Linear(kv_dim, embed_dim, bias=bias)
self.c_v = nn.Linear(kv_dim, embed_dim, bias=bias)
self.c_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.num_heads = num_heads
def forward(self, x, c, attn_mask=None, is_causal: bool = False):
"""
Forward pass for the attention mechanism.
Args:
x (torch.Tensor): Input tensor of shape.
c (torch.Tensor): Context tensor.
attn_mask (torch.Tensor, optional): Attention mask.
Defaults to None.
is_causal (bool, optional): Whether to apply causal masking. Defaults to False.
Returns:
torch.Tensor: Output tensor.
"""
q, k = self.c_q(x), self.c_k(c)
v = self.c_v(c)
b, l, d = q.shape
s = k.shape[1]
q = q.view(b, l, self.num_heads, -1).transpose(1, 2) # (B, nh, T, hs)
k = k.view(b, s, self.num_heads, -1).transpose(1, 2) # (B, nh, T, hs)
v = v.view(b, s, self.num_heads, -1).transpose(1, 2) # (B, nh, T, hs)
y = torch.nn.functional.scaled_dot_product_attention(
q,
k,
v,
attn_mask=attn_mask,
dropout_p=0.0,
is_causal=(attn_mask is not None) and is_causal,
)
y = y.transpose(1, 2).contiguous().view(b, l, d)
y = self.c_proj(y)
return y
class EncoderLayer(nn.Module):
def __init__(
self,
embed_dim: int,
num_heads: int,
bias: bool = True,
eps: float = 1e-6,
) -> None:
"""
Initializes the EncoderLayer module.
Args:
embed_dim (int): The dimensionality of the embedding space.
num_heads (int): The number of attention heads.
bias (bool, optional): Whether to include bias terms in the layers. Defaults to True.
eps (float, optional): A small value added for numerical stability in normalization layers. Defaults to 1e-6.
"""
super().__init__()
self.ln_1 = LayerNorm(embed_dim, elementwise_affine=False, eps=eps)
self.attn = SelfAttention(embed_dim, num_heads, bias=bias, eps=eps)
self.ln_2 = LayerNorm(embed_dim, elementwise_affine=False, eps=eps)
self.mlp = MLP(embed_dim=embed_dim, hidden_dim=embed_dim * 4, bias=bias)
def forward(self, x, attn_mask=None, is_causal: bool = False):
"""
Performs the forward pass of the transformer block.
Args:
x (torch.Tensor): The input tensor.
attn_mask (torch.Tensor, optional): An optional attention mask tensor to apply during the
attention computation. Default is None.
is_causal (bool, optional): If True, applies a causal mask to prevent attention to future
positions. Default is False.
Returns:
torch.Tensor: The output tensor of the same shape as the input.
"""
x = x + self.attn(self.ln_1(x), attn_mask=attn_mask, is_causal=is_causal)
x = x + self.mlp(self.ln_2(x))
return x
class EncoderCrossAttentionLayer(nn.Module):
def __init__(
self,
embed_dim: int,
num_heads: int,
q_dim=None,
kv_dim=None,
bias: bool = True,
eps: float = 1e-6,
) -> None:
"""
Initializes the EncoderAttentionLayer module with cross-attention,
and a feed-forward MLP.
Args:
embed_dim (int): The dimensionality of the embedding space.
num_heads (int): The number of attention heads.
q_dim (int, optional): Dimensionality of the query input. Defaults to `embed_dim`.
kv_dim (int, optional): Dimensionality of the key and value inputs. Defaults to `embed_dim`.
bias (bool, optional): Whether to include bias terms in the layers. Defaults to True.
eps (float, optional): A small value added to the denominator for numerical stability
in layer normalization. Defaults to 1e-6.
"""
super().__init__()
q_dim = q_dim or embed_dim
kv_dim = kv_dim or embed_dim
self.attn = CrossAttention(
embed_dim,
num_heads,
q_dim=q_dim,
kv_dim=kv_dim,
bias=bias,
)
self.ln_1 = LayerNorm(q_dim, elementwise_affine=False, eps=eps)
self.ln_2 = LayerNorm(kv_dim, elementwise_affine=False, eps=eps)
self.ln_f = LayerNorm(embed_dim, elementwise_affine=False, eps=eps)
self.mlp = MLP(embed_dim=embed_dim, hidden_dim=embed_dim * 4, bias=bias)
def forward(self, x, c, attn_mask=None, is_causal: bool = False):
"""
Forward pass for the attention mechanism.
Args:
x (torch.Tensor): The input tensor to the attention mechanism.
c (torch.Tensor): The context tensor used for cross-attention.
attn_mask (torch.Tensor, optional): An optional attention mask to control
which positions can attend to others. Defaults to None.
is_causal (bool, optional): If True, applies a causal mask to prevent
attending to future positions. Defaults to False.
Returns:
torch.Tensor: The output tensor after applying attention and MLP layers.
"""
x = x + self.attn(
self.ln_1(x), self.ln_2(c), attn_mask=attn_mask, is_causal=is_causal
)
x = x + self.mlp(self.ln_f(x))
return x
|