Spaces:
Running
on
L40S
Running
on
L40S
File size: 23,718 Bytes
616f571 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 |
"""
Blender script to render images of 3D models.
This script is adopted from the Trellis rendering script:
https://github.com/microsoft/TRELLIS/blob/main/dataset_toolkits/render.py
"""
import argparse
import math
import os
import platform
import random
import sys
from pathlib import Path
from typing import Any, Callable, Dict, Generator, Literal, Optional, Tuple
import bpy
import numpy as np
from mathutils import Vector
pathdir = Path(__file__).parent
sys.path.append(pathdir.as_posix())
print(dir(bpy), bpy.__path__)
IMPORT_FUNCTIONS: Dict[str, Callable] = {
".obj": bpy.ops.wm.obj_import,
".glb": bpy.ops.import_scene.gltf,
".gltf": bpy.ops.import_scene.gltf,
}
def center_and_scale_mesh(scale_value: float = 1.0) -> None:
"""Centers and scales the scene to fit in a unit cube.
For example,
scale_value = 1.0 ==> [-0.5, 0.5]
scale_value = 2.0 ==> [-1.0, 1.0]
"""
# Get all mesh objects
mesh_objects = [obj for obj in bpy.context.scene.objects if obj.type == "MESH"]
if not mesh_objects:
return
# Calculate bounds
min_coords = Vector((float("inf"),) * 3)
max_coords = Vector((float("-inf"),) * 3)
for obj in mesh_objects:
# Get all vertices in world space
for vertex in obj.data.vertices:
world_coord = obj.matrix_world @ vertex.co
min_coords.x = min(min_coords.x, world_coord.x)
min_coords.y = min(min_coords.y, world_coord.y)
min_coords.z = min(min_coords.z, world_coord.z)
max_coords.x = max(max_coords.x, world_coord.x)
max_coords.y = max(max_coords.y, world_coord.y)
max_coords.z = max(max_coords.z, world_coord.z)
# Calculate center and dimensions
center = (min_coords + max_coords) / 2
dimensions = max_coords - min_coords
scale = scale_value / max(
dimensions.x, dimensions.y, dimensions.z
) # Scale to fit in [-scale_value/2, scale_value/2] cube
# Create an empty to serve as the parent
empty = bpy.data.objects.new("Parent_Empty", None)
bpy.context.scene.collection.objects.link(empty)
# Parent all mesh objects to the empty
for obj in mesh_objects:
obj.parent = empty
# Move empty to center everything
empty.location = -center
# Apply scale to empty
empty.scale = (scale, scale, scale)
bpy.context.view_layer.update()
bpy.ops.object.select_all(action="DESELECT")
empty.select_set(True)
bpy.context.view_layer.objects.active = empty
bpy.ops.object.transform_apply(location=True, rotation=True, scale=True)
print(f"Empty location: {empty.location}")
print(f"Empty scale: {empty.scale}")
return scale
def normalize_scene() -> None:
"""Normalizes the scene by scaling and translating it to fit in a unit cube centered
at the origin.
Mostly taken from the Point-E / Shap-E rendering script
(https://github.com/openai/point-e/blob/main/point_e/evals/scripts/blender_script.py#L97-L112),
but fix for multiple root objects: (see bug report here:
https://github.com/openai/shap-e/pull/60).
Returns:
The new parent object that all objects descend from.
"""
if len(list(get_scene_root_objects())) > 1:
# create an empty object to be used as a parent for all root objects
parent_empty = bpy.data.objects.new("ParentEmpty", None)
bpy.context.scene.collection.objects.link(parent_empty)
# parent all root objects to the empty object
for obj in get_scene_root_objects():
if obj != parent_empty:
obj.parent = parent_empty
bbox_min, bbox_max = scene_bbox()
scale = 1 / max(bbox_max - bbox_min)
for obj in get_scene_root_objects():
obj.scale = obj.scale * scale
# Apply scale to matrix_world.
bpy.context.view_layer.update()
bbox_min, bbox_max = scene_bbox()
offset = -(bbox_min + bbox_max) / 2
for obj in get_scene_root_objects():
obj.matrix_world.translation += offset
bpy.ops.object.select_all(action="DESELECT")
bbox_min, bbox_max = scene_bbox()
print(f"After normalize_scene: bbox_min: {bbox_min}, bbox_max: {bbox_max}")
# unparent the camera
bpy.data.objects["Camera"].parent = None
return parent_empty
def reset_cameras() -> None:
"""Resets the cameras in the scene to a single default camera."""
# Delete all existing cameras
bpy.ops.object.select_all(action="DESELECT")
bpy.ops.object.select_by_type(type="CAMERA")
bpy.ops.object.delete()
# Create a new camera with default properties
bpy.ops.object.camera_add()
# Rename the new camera to 'NewDefaultCamera'
new_camera = bpy.context.active_object
new_camera.name = "Camera"
# Set the new camera as the active camera for the scene
scene.camera = new_camera
def get_camera_with_position(x, y, z, fov_degrees=40):
camera = bpy.data.objects["Camera"]
camera.data.angle = math.radians(fov_degrees)
camera.location = np.array([x, y, z])
direction = -camera.location
rot_quat = direction.to_track_quat("-Z", "Y")
camera.rotation_euler = rot_quat.to_euler()
return camera
def reset_scene() -> None:
"""Resets the scene to a clean state.
Returns:
None
"""
# delete everything that isn't part of a camera or a light
for obj in bpy.data.objects:
if obj.type not in {"CAMERA", "LIGHT"}:
bpy.data.objects.remove(obj, do_unlink=True)
# delete all the materials
for material in bpy.data.materials:
bpy.data.materials.remove(material, do_unlink=True)
# delete all the textures
for texture in bpy.data.textures:
bpy.data.textures.remove(texture, do_unlink=True)
# delete all the images
for image in bpy.data.images:
bpy.data.images.remove(image, do_unlink=True)
def load_object(object_path: str) -> None:
"""Loads a model with a supported file extension into the scene.
Args:
object_path (str): Path to the model file.
Raises:
ValueError: If the file extension is not supported.
Returns:
None
"""
file_extension = Path(object_path).suffix
if file_extension is None or file_extension == "":
raise ValueError(f"Unsupported file type: {object_path}")
# load from existing import functions
import_function = IMPORT_FUNCTIONS[file_extension]
if file_extension in {".glb", ".gltf"}:
import_function(filepath=object_path, merge_vertices=True)
else:
import_function(filepath=object_path)
def clear_lights():
bpy.ops.object.select_all(action="DESELECT")
for obj in bpy.context.scene.objects.values():
if isinstance(obj.data, bpy.types.Light):
obj.select_set(True)
bpy.ops.object.delete()
def create_light(
location,
energy=1.0,
angle=0.5 * math.pi / 180,
light_type: Literal["POINT", "SUN", "SPOT", "AREA"] = "SUN",
):
# https://blender.stackexchange.com/questions/215624/how-to-create-a-light-with-the-python-api-in-blender-2-92
light_data = bpy.data.lights.new(name="Light", type=light_type)
light_data.energy = energy
if light_type != "AREA" and light_type != "POINT":
light_data.angle = angle
light_object = bpy.data.objects.new(name="Light", object_data=light_data)
direction = -location
rot_quat = direction.to_track_quat("-Z", "Y")
light_object.rotation_euler = rot_quat.to_euler()
bpy.context.view_layer.update()
bpy.context.collection.objects.link(light_object)
light_object.location = location
def create_uniform_lights(
distance=2.0,
energy=3.0,
light_type: Literal["POINT", "SUN", "SPOT", "AREA"] = "SUN",
):
clear_lights()
create_light(Vector([1, 0, 0]) * distance, energy=energy, light_type=light_type)
create_light(-Vector([1, 0, 0]) * distance, energy=energy, light_type=light_type)
create_light(Vector([0, 1, 0]) * distance, energy=energy, light_type=light_type)
create_light(-Vector([0, 1, 0]) * distance, energy=energy, light_type=light_type)
create_light(Vector([0, 0, 1]) * distance, energy=energy, light_type=light_type)
create_light(-Vector([0, 0, 1]) * distance, energy=energy, light_type=light_type)
def create_light_at_camera_position(
camera_position: Vector,
energy=1.5,
use_shadow=False,
light_type: Literal["POINT", "SUN", "SPOT", "AREA"] = "SUN",
):
clear_lights()
create_light(camera_position, energy=energy, light_type=light_type)
# disable shadows
if not use_shadow:
for light in bpy.data.lights:
light.use_shadow = False
def set_world_background_color(
color: Tuple[float, float, float, float] = (1.0, 1.0, 1.0, 1.0),
) -> None:
bpy.context.scene.world.use_nodes = True
bpy.context.scene.world.node_tree.nodes["Background"].inputs[
0
].default_value = color
bpy.context.scene.view_settings.view_transform = "Standard"
def scene_bbox(
single_obj: Optional[bpy.types.Object] = None, ignore_matrix: bool = False
) -> Tuple[Vector, Vector]:
"""Returns the bounding box of the scene.
Taken from Shap-E rendering script
(https://github.com/openai/shap-e/blob/main/shap_e/rendering/blender/blender_script.py#L68-L82)
Args:
single_obj (Optional[bpy.types.Object], optional): If not None, only computes
the bounding box for the given object. Defaults to None.
ignore_matrix (bool, optional): Whether to ignore the object's matrix. Defaults
to False.
Raises:
RuntimeError: If there are no objects in the scene.
Returns:
Tuple[Vector, Vector]: The minimum and maximum coordinates of the bounding box.
"""
bbox_min = (math.inf,) * 3
bbox_max = (-math.inf,) * 3
found = False
for obj in get_scene_meshes() if single_obj is None else [single_obj]:
found = True
for coord in obj.bound_box:
coord = Vector(coord)
if not ignore_matrix:
coord = obj.matrix_world @ coord
bbox_min = tuple(min(x, y) for x, y in zip(bbox_min, coord))
bbox_max = tuple(max(x, y) for x, y in zip(bbox_max, coord))
if not found:
raise RuntimeError("no objects in scene to compute bounding box for")
return Vector(bbox_min), Vector(bbox_max)
def get_scene_root_objects() -> Generator[bpy.types.Object, None, None]:
"""Returns all root objects in the scene.
Yields:
Generator[bpy.types.Object, None, None]: Generator of all root objects in the
scene.
"""
for obj in bpy.context.scene.objects.values():
if not obj.parent and not isinstance(obj.data, bpy.types.Light):
yield obj
def get_scene_meshes() -> Generator[bpy.types.Object, None, None]:
"""Returns all meshes in the scene.
Yields:
Generator[bpy.types.Object, None, None]: Generator of all meshes in the scene.
"""
for obj in bpy.context.scene.objects.values():
if isinstance(obj.data, (bpy.types.Mesh)):
yield obj
def delete_missing_textures() -> Dict[str, Any]:
"""Deletes all missing textures in the scene.
Returns:
Dict[str, Any]: Dictionary with keys "count", "files", and "file_path_to_color".
"count" is the number of missing textures, "files" is a list of the missing
texture file paths, and "file_path_to_color" is a dictionary mapping the
missing texture file paths to a random color.
"""
missing_file_count = 0
out_files = []
file_path_to_color = {}
# Check all materials in the scene
for material in bpy.data.materials:
if material.use_nodes:
for node in material.node_tree.nodes:
if node.type == "TEX_IMAGE":
image = node.image
if image is not None:
file_path = bpy.path.abspath(image.filepath)
if file_path == "":
# means it's embedded
continue
if not os.path.exists(file_path):
# Find the connected Principled BSDF node
connected_node = node.outputs[0].links[0].to_node
if connected_node.type == "BSDF_PRINCIPLED":
if file_path not in file_path_to_color:
# Set a random color for the unique missing file path
random_color = [random.random() for _ in range(3)]
file_path_to_color[file_path] = random_color + [1]
connected_node.inputs[
"Base Color"
].default_value = file_path_to_color[file_path]
# Delete the TEX_IMAGE node
material.node_tree.nodes.remove(node)
missing_file_count += 1
out_files.append(image.filepath)
return {
"count": missing_file_count,
"files": out_files,
"file_path_to_color": file_path_to_color,
}
def setup_environment_lighting(envmap_path):
world = bpy.context.scene.world
world.use_nodes = True
nodes = world.node_tree.nodes
links = world.node_tree.links
# Clear existing nodes
for node in nodes:
nodes.remove(node)
# Create Background node
bg_node = nodes.new(type="ShaderNodeBackground")
bg_node.location = (0, 0)
# Create Environment Texture node
env_tex_node = nodes.new(type="ShaderNodeTexEnvironment")
env_tex_node.location = (-300, 0)
# Set the environment texture path (replace this with your file path)
env_tex_node.image = bpy.data.images.load(envmap_path)
# Create World Output node
world_output_node = nodes.new(type="ShaderNodeOutputWorld")
world_output_node.location = (300, 0)
# Link nodes
links.new(env_tex_node.outputs["Color"], bg_node.inputs["Color"])
links.new(bg_node.outputs["Background"], world_output_node.inputs["Surface"])
def create_solid_color_material(name, color):
mat = bpy.data.materials.new(name)
mat.use_nodes = True
node_tree = mat.node_tree
color_node = node_tree.nodes.new("ShaderNodeBsdfDiffuse")
color_node.inputs["Color"].default_value = color
mat_output = node_tree.nodes["Material Output"]
node_tree.links.new(color_node.outputs["BSDF"], mat_output.inputs["Surface"])
return mat
def create_phong_material(name, color):
mat = bpy.data.materials.new(name)
mat.use_nodes = True
node_tree = mat.node_tree
spec_node = node_tree.nodes.new("ShaderNodeBsdfPrincipled")
print(spec_node.inputs.keys())
spec_node.inputs["Base Color"].default_value = color
spec_node.inputs["Roughness"].default_value = 0.5
spec_node.inputs["Metallic"].default_value = 1.0
mat_output = node_tree.nodes["Material Output"]
node_tree.links.new(spec_node.outputs["BSDF"], mat_output.inputs["Surface"])
return mat
def render_object(
object_file: str,
num_renders: int,
output_dir: str,
transparent_background: bool = False,
environment_map: str = None,
) -> None:
"""Saves rendered images for given asset to specified output directory.
Args:
object_file (str): Path to the object file.
num_renders (int): Number of renders to save of the object.
output_dir (str): Path to the directory where the rendered images and metadata
will be saved. The rendered images will be saved in the subdirectory
`output_dir/stemname`.
transparent_background (bool): Whether to use transparent background,
otherwise the background is white.
Returns:
None
"""
os.makedirs(output_dir, exist_ok=True)
# load the object
reset_scene()
load_object(object_file)
if transparent_background:
scene.render.film_transparent = True
else:
scene.render.film_transparent = False
set_world_background_color([0.2, 0.2, 0.2, 1.0])
# normalize the scene
_ = normalize_scene()
# Set up cameras
cam = scene.objects["Camera"]
fov_degrees = 40.0
cam.data.angle = np.radians(fov_degrees)
# Set up camera constraints
cam_constraint = cam.constraints.new(type="TRACK_TO")
cam_constraint.track_axis = "TRACK_NEGATIVE_Z"
cam_constraint.up_axis = "UP_Y"
empty = bpy.data.objects.new("Empty", None)
empty.location = (0, 0, 0)
scene.collection.objects.link(empty)
cam_constraint.target = empty
cam.parent = empty
# delete all objects that are not meshes
delete_missing_textures()
if environment_map:
setup_environment_lighting(environment_map)
else:
create_uniform_lights(energy=1.0, light_type="SUN")
camera_position = [0, -2, 0]
# determine how much to orbit camera by.
stepsize = 360.0 / num_renders
def render_views(name):
for i in range(num_renders):
# set camera
_ = get_camera_with_position(
camera_position[0],
camera_position[1],
camera_position[2],
fov_degrees=fov_degrees,
)
# Set output paths with absolute paths
render_path = os.path.abspath(
os.path.join(output_dir, f"{i:03d}_{name}.png")
)
# Set file output paths
scene.render.filepath = render_path
# Make sure the output directory exists
os.makedirs(output_dir, exist_ok=True)
# Render
bpy.ops.render.render(write_still=True)
context.view_layer.objects.active = empty
empty.rotation_euler[2] += math.radians(stepsize)
# ensure that all objects have materials, if not then add a default
# one.
textured_mat = create_solid_color_material("default texture", [0.6, 0.6, 0.6, 1])
for obj in get_scene_meshes():
if obj.active_material is None:
obj.active_material = textured_mat
render_views("textured")
def enable_gpus(device_type, use_cpus=False):
preferences = bpy.context.preferences
cycles_preferences = preferences.addons["cycles"].preferences
cycles_preferences.refresh_devices()
try:
devices = cycles_preferences.devices
except:
print("No devices detected")
if device_type == "CPU":
return []
else:
raise RuntimeError(f"No devices detected, set use_cpus to True")
assert device_type in [
"CUDA",
"METAL",
"OPENCL",
"CPU",
"NONE",
], f"Unsupported device type: {device_type}"
try:
# print(devices)
iter(devices)
except TypeError:
# print("Single GPU Detected")
devices = [devices]
activated_gpus = []
for device in devices:
if device.type == "CPU":
device.use = use_cpus
else:
device.use = True
activated_gpus.append(device.name)
if device_type == "CUDA":
cycles_preferences.compute_device_type = "CUDA"
bpy.context.scene.cycles.device = "GPU"
elif device_type == "METAL":
cycles_preferences.compute_device_type = "METAL"
bpy.context.scene.cycles.device = "GPU"
elif device_type == "OPENCL":
cycles_preferences.compute_device_type = "OPENCL"
bpy.context.scene.cycles.device = "GPU"
else:
raise RuntimeError(f"Unsupported device type: {device_type}")
return activated_gpus
def set_render_settings(engine, resolution):
# Set render settings
render.engine = engine #
render.image_settings.file_format = "PNG"
render.image_settings.color_mode = "RGBA"
render.resolution_x = resolution
render.resolution_y = resolution
render.resolution_percentage = 100
# Set cycles settings
scene.cycles.device = "GPU"
scene.cycles.use_adaptive_sampling = True
scene.cycles.adaptive_threshold = 0.1
scene.cycles.samples = 64
scene.cycles.adaptive_min_samples = 1
scene.cycles.filter_width = 2
scene.cycles.use_fast_gi = True
scene.cycles.fast_gi_method = "REPLACE"
world.light_settings.ao_factor = 1.0
world.light_settings.distance = 10
scene.cycles.use_denoising = True # ML denoising
scene.cycles.denoising_use_gpu = True
# bake existing frames for faster future renders
scene.render.use_persistent_data = True
# Set eevee settings
scene.eevee.use_shadows = True
scene.eevee.use_raytracing = True
scene.eevee.ray_tracing_options.use_denoise = True
scene.eevee.use_fast_gi = True
scene.eevee.fast_gi_method = "GLOBAL_ILLUMINATION"
scene.eevee.ray_tracing_options.trace_max_roughness = 0.5
scene.eevee.fast_gi_resolution = "2"
scene.eevee.fast_gi_ray_count = 2
scene.eevee.fast_gi_step_count = 8
def print_devices():
print("Devices:")
preferences = bpy.context.preferences
cycles_preferences = preferences.addons["cycles"].preferences
cycles_preferences.refresh_devices()
devices = cycles_preferences.devices
for device in devices:
print(f' [{device.id}]<{device.type}> "{device.name}" Using: {device.use}')
print(f"Compute device type: {cycles_preferences.compute_device_type}")
print(f"Cycles device: {bpy.context.scene.cycles.device}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--object_path",
type=str,
required=False,
help="Path to the object file",
)
parser.add_argument(
"--output_dir",
type=str,
required=True,
help="Path to the directory where the rendered images and metadata will be saved.",
)
parser.add_argument(
"--engine",
type=str,
default="BLENDER_EEVEE_NEXT", # BLENDER_BLENDER_EEVEE_NEXT rasterization, better than nvdifrast, CYCLES
choices=["CYCLES", "BLENDER_EEVEE_NEXT"],
)
parser.add_argument(
"--num_renders",
type=int,
default=12,
help="Number of renders to save of the object.",
)
parser.add_argument(
"--render_resolution",
type=int,
default=512,
help="Resolution of the rendered images.",
)
parser.add_argument(
"--transparent_background",
action="store_true",
help="Whether to use transparent background",
)
parser.add_argument(
"--environment_map",
default=None,
type=str,
help="Use the given environment map for lighting",
)
argv = sys.argv[sys.argv.index("--") + 1 :]
args = parser.parse_args(argv)
context = bpy.context
scene = context.scene
render = scene.render
world = bpy.data.worlds["World"]
set_render_settings(args.engine, args.render_resolution)
# detect platform and activate GPUs
platform = platform.system()
if platform == "Darwin":
activated_gpus = enable_gpus("METAL", use_cpus=True)
elif platform == "Linux":
activated_gpus = enable_gpus("CUDA", use_cpus=False)
else:
raise RuntimeError("Unsupported platform")
print(f"Activated GPUs: {activated_gpus}")
print_devices()
render_object(
object_file=args.object_path,
num_renders=args.num_renders,
output_dir=args.output_dir,
transparent_background=args.transparent_background,
environment_map=args.environment_map,
)
|