Akash Garg
adding cube sources
616f571
from typing import Literal, Union
import numpy as np
import torch
import warp as wp
def generate_dense_grid_points(
bbox_min: np.ndarray,
bbox_max: np.ndarray,
resolution_base: float,
indexing: Literal["xy", "ij"] = "ij",
) -> tuple[np.ndarray, list[int], np.ndarray]:
"""
Generate a dense grid of points within a bounding box.
Parameters:
bbox_min (np.ndarray): The minimum coordinates of the bounding box (3D).
bbox_max (np.ndarray): The maximum coordinates of the bounding box (3D).
resolution_base (float): The base resolution for the grid. The number of cells along each axis will be 2^resolution_base.
indexing (Literal["xy", "ij"], optional): The indexing convention for the grid. "xy" for Cartesian indexing, "ij" for matrix indexing. Default is "ij".
Returns:
tuple: A tuple containing:
- xyz (np.ndarray): A 2D array of shape (N, 3) where N is the total number of grid points. Each row represents the (x, y, z) coordinates of a grid point.
- grid_size (list): A list of three integers representing the number of grid points along each axis.
- length (np.ndarray): The length of the bounding box along each axis.
"""
length = bbox_max - bbox_min
num_cells = np.exp2(resolution_base)
x = np.linspace(bbox_min[0], bbox_max[0], int(num_cells) + 1, dtype=np.float32)
y = np.linspace(bbox_min[1], bbox_max[1], int(num_cells) + 1, dtype=np.float32)
z = np.linspace(bbox_min[2], bbox_max[2], int(num_cells) + 1, dtype=np.float32)
[xs, ys, zs] = np.meshgrid(x, y, z, indexing=indexing)
xyz = np.stack((xs, ys, zs), axis=-1)
xyz = xyz.reshape(-1, 3)
grid_size = [int(num_cells) + 1, int(num_cells) + 1, int(num_cells) + 1]
return xyz, grid_size, length
def marching_cubes_with_warp(
grid_logits: torch.Tensor,
level: float,
device: Union[str, torch.device] = "cuda",
max_verts: int = 3_000_000,
max_tris: int = 3_000_000,
) -> tuple[np.ndarray, np.ndarray]:
"""
Perform the marching cubes algorithm on a 3D grid with warp support.
Args:
grid_logits (torch.Tensor): A 3D tensor containing the grid logits.
level (float): The threshold level for the isosurface.
device (Union[str, torch.device], optional): The device to perform the computation on. Defaults to "cuda".
max_verts (int, optional): The maximum number of vertices. Defaults to 3,000,000.
max_tris (int, optional): The maximum number of triangles. Defaults to 3,000,000.
Returns:
Tuple[np.ndarray, np.ndarray]: A tuple containing the vertices and faces of the isosurface.
"""
if isinstance(device, torch.device):
device = str(device)
assert grid_logits.ndim == 3
if "cuda" in device:
assert wp.is_cuda_available()
else:
raise ValueError(
f"Device {device} is not supported for marching_cubes_with_warp"
)
dim = grid_logits.shape[0]
field = wp.from_torch(grid_logits)
iso = wp.MarchingCubes(
nx=dim,
ny=dim,
nz=dim,
max_verts=int(max_verts),
max_tris=int(max_tris),
device=device,
)
iso.surface(field=field, threshold=level)
vertices = iso.verts.numpy()
faces = iso.indices.numpy().reshape(-1, 3)
return vertices, faces