Spaces:
Running
on
L40S
Running
on
L40S
from typing import Literal, Union | |
import numpy as np | |
import torch | |
import warp as wp | |
def generate_dense_grid_points( | |
bbox_min: np.ndarray, | |
bbox_max: np.ndarray, | |
resolution_base: float, | |
indexing: Literal["xy", "ij"] = "ij", | |
) -> tuple[np.ndarray, list[int], np.ndarray]: | |
""" | |
Generate a dense grid of points within a bounding box. | |
Parameters: | |
bbox_min (np.ndarray): The minimum coordinates of the bounding box (3D). | |
bbox_max (np.ndarray): The maximum coordinates of the bounding box (3D). | |
resolution_base (float): The base resolution for the grid. The number of cells along each axis will be 2^resolution_base. | |
indexing (Literal["xy", "ij"], optional): The indexing convention for the grid. "xy" for Cartesian indexing, "ij" for matrix indexing. Default is "ij". | |
Returns: | |
tuple: A tuple containing: | |
- xyz (np.ndarray): A 2D array of shape (N, 3) where N is the total number of grid points. Each row represents the (x, y, z) coordinates of a grid point. | |
- grid_size (list): A list of three integers representing the number of grid points along each axis. | |
- length (np.ndarray): The length of the bounding box along each axis. | |
""" | |
length = bbox_max - bbox_min | |
num_cells = np.exp2(resolution_base) | |
x = np.linspace(bbox_min[0], bbox_max[0], int(num_cells) + 1, dtype=np.float32) | |
y = np.linspace(bbox_min[1], bbox_max[1], int(num_cells) + 1, dtype=np.float32) | |
z = np.linspace(bbox_min[2], bbox_max[2], int(num_cells) + 1, dtype=np.float32) | |
[xs, ys, zs] = np.meshgrid(x, y, z, indexing=indexing) | |
xyz = np.stack((xs, ys, zs), axis=-1) | |
xyz = xyz.reshape(-1, 3) | |
grid_size = [int(num_cells) + 1, int(num_cells) + 1, int(num_cells) + 1] | |
return xyz, grid_size, length | |
def marching_cubes_with_warp( | |
grid_logits: torch.Tensor, | |
level: float, | |
device: Union[str, torch.device] = "cuda", | |
max_verts: int = 3_000_000, | |
max_tris: int = 3_000_000, | |
) -> tuple[np.ndarray, np.ndarray]: | |
""" | |
Perform the marching cubes algorithm on a 3D grid with warp support. | |
Args: | |
grid_logits (torch.Tensor): A 3D tensor containing the grid logits. | |
level (float): The threshold level for the isosurface. | |
device (Union[str, torch.device], optional): The device to perform the computation on. Defaults to "cuda". | |
max_verts (int, optional): The maximum number of vertices. Defaults to 3,000,000. | |
max_tris (int, optional): The maximum number of triangles. Defaults to 3,000,000. | |
Returns: | |
Tuple[np.ndarray, np.ndarray]: A tuple containing the vertices and faces of the isosurface. | |
""" | |
if isinstance(device, torch.device): | |
device = str(device) | |
assert grid_logits.ndim == 3 | |
if "cuda" in device: | |
assert wp.is_cuda_available() | |
else: | |
raise ValueError( | |
f"Device {device} is not supported for marching_cubes_with_warp" | |
) | |
dim = grid_logits.shape[0] | |
field = wp.from_torch(grid_logits) | |
iso = wp.MarchingCubes( | |
nx=dim, | |
ny=dim, | |
nz=dim, | |
max_verts=int(max_verts), | |
max_tris=int(max_tris), | |
device=device, | |
) | |
iso.surface(field=field, threshold=level) | |
vertices = iso.verts.numpy() | |
faces = iso.indices.numpy().reshape(-1, 3) | |
return vertices, faces | |