Akash Garg
adding cube sources
616f571
import torch
import torch.nn as nn
def fused_rms_norm(x: torch.Tensor, weight: nn.Parameter, eps: float):
"""
Applies a fused Root Mean Square (RMS) normalization to the input tensor.
Args:
x (torch.Tensor): The input tensor to be normalized. Expected to have
at least one dimension.
weight (nn.Parameter): A learnable parameter used to scale the normalized
tensor. Its shape must be broadcastable to the shape of `x`.
eps (float): A small constant added to the denominator for numerical
stability during normalization.
Returns:
torch.Tensor: The normalized and scaled tensor with the same shape as `x`.
"""
x = x.float()
return (x * torch.rsqrt((x * x).mean(-1, keepdim=True).add_(eps))) * weight
class LayerNorm(nn.LayerNorm):
def forward(self, input: torch.Tensor):
"""
Wrapper to ensure that the input tensor is cast to float before normalization.
"""
y = super().forward(input.float())
return y.type_as(input)
class RMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-5, elementwise_affine: bool = True):
"""
Initializes the normalization layer.
Args:
dim (int): The number of features in the input tensor.
eps (float, optional): A small value added to the denominator for numerical stability. Defaults to 1e-5.
elementwise_affine (bool, optional): If True, this layer will have learnable per-element affine parameters. Defaults to True.
"""
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim), requires_grad=elementwise_affine)
def forward(self, x):
return fused_rms_norm(x, weight=self.weight, eps=self.eps).type_as(x)