Akash Garg
adding cube sources
616f571
from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from cube3d.model.transformers.cache import Cache
from cube3d.model.transformers.norm import LayerNorm, RMSNorm
from cube3d.model.transformers.rope import scaled_dot_product_attention_with_rotary_emb
class SwiGLUMLP(nn.Module):
def __init__(self, embed_dim, hidden_dim, bias=True, **kwargs):
"""
A PyTorch implementation of the SwiGLU (Swish-Gated Linear Unit) MLP layer.
This module consists of three linear projections: `gate_proj`, `up_proj`, and `down_proj`.
It applies the SwiGLU activation function, which combines the Swish activation with a gating mechanism,
followed by a projection back to the original embedding dimension.
Args:
embed_dim (int): The dimensionality of the input embeddings.
hidden_dim (int): The dimensionality of the hidden layer.
bias (bool, optional): Whether to include bias terms in the linear layers. Defaults to True.
**kwargs: Additional keyword arguments (currently unused).
"""
super().__init__()
self.gate_proj = nn.Linear(embed_dim, hidden_dim, bias=bias)
self.up_proj = nn.Linear(embed_dim, hidden_dim, bias=bias)
self.down_proj = nn.Linear(hidden_dim, embed_dim, bias=bias)
# Ignore copy
def forward(self, x):
"""
Applies a forward pass.
Args:
x (torch.Tensor): The input tensor.
Returns:
torch.Tensor: The output tensor after applying the forward pass.
"""
down_proj = self.down_proj(F.silu(self.gate_proj(x)) * self.up_proj(x))
return down_proj
class SelfAttentionWithRotaryEmbedding(nn.Module):
def __init__(
self,
embed_dim: int,
num_heads: int,
bias: bool = True,
eps: float = 1e-6,
):
"""
A PyTorch module implementing self-attention with rotary embeddings.
Args:
embed_dim (int): The dimensionality of the input embeddings.
num_heads (int): The number of attention heads.
bias (bool, optional): Whether to include bias terms in the linear projections. Defaults to True.
eps (float, optional): A small value added for numerical stability in normalization. Defaults to 1e-6.
"""
super().__init__()
assert embed_dim % num_heads == 0
self.num_heads = num_heads
# key, query, value projections for all heads, but in a batch
self.c_qk = nn.Linear(embed_dim, 2 * embed_dim, bias=False)
self.c_v = nn.Linear(embed_dim, embed_dim, bias=bias)
# output projection
self.c_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
head_dim = embed_dim // num_heads
self.q_norm = RMSNorm(head_dim)
self.k_norm = RMSNorm(head_dim)
def forward(
self,
x,
freqs_cis: torch.Tensor,
attn_mask=None,
is_causal: bool = False,
kv_cache: Optional[Cache] = None,
curr_pos_id: Optional[torch.Tensor] = None,
decode: bool = False,
):
"""
Forward pass for the SelfAttentionWithRotaryEmbedding instance.
Args:
x (torch.Tensor): Input tensor.
freqs_cis (torch.Tensor): Precomputed rotary positional embeddings.
attn_mask (Optional[torch.Tensor], optional): Attention mask to apply during self-attention. Defaults to None.
is_causal (bool, optional): Whether to apply causal masking for autoregressive decoding. Defaults to False.
kv_cache (Optional[Cache], optional): Cache object for storing key and value states for decoding. Defaults to None.
curr_pos_id (Optional[torch.Tensor], optional): Current position indices for decoding. Required if `decode` is True. Defaults to None.
decode (bool, optional): Whether the model is in decoding mode. Defaults to False.
Returns:
torch.Tensor: Output tensor after applying self-attention and projection.
"""
# batch size, sequence length, embedding dim
b, l, d = x.shape
# compute q, k, v and then split per q, k, v
q, k = self.c_qk(x).chunk(2, dim=-1)
v = self.c_v(x)
# split per head
q = q.view(b, l, self.num_heads, -1).transpose(1, 2) # (B, nh, T, hs)
k = k.view(b, l, self.num_heads, -1).transpose(1, 2) # (B, nh, T, hs)
v = v.view(b, l, self.num_heads, -1).transpose(1, 2) # (B, nh, T, hs)
q = self.q_norm(q)
k = self.k_norm(k)
if kv_cache is not None:
if not decode:
kv_cache.key_states[:, :, : k.shape[2], :].copy_(k)
kv_cache.value_states[:, :, : k.shape[2], :].copy_(v)
else:
assert curr_pos_id is not None
kv_cache.key_states.index_copy_(2, curr_pos_id, k)
kv_cache.value_states.index_copy_(2, curr_pos_id, v)
k = kv_cache.key_states
v = kv_cache.value_states
# self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
# efficient attention using Flash Attention CUDA kernels
y = scaled_dot_product_attention_with_rotary_emb(
q,
k,
v,
freqs_cis=freqs_cis,
attn_mask=attn_mask,
curr_pos_id=curr_pos_id if decode else None,
is_causal=is_causal,
)
y = (
y.transpose(1, 2).contiguous().view(b, l, d)
) # re-assemble all head outputs side by side
# output projection
y = self.c_proj(y)
return y
class DecoderLayerWithRotaryEmbedding(nn.Module):
def __init__(
self,
embed_dim: int,
num_heads: int,
bias: bool = True,
eps: float = 1e-6,
) -> None:
"""
Initializes the transformer model with rotary embeddings.
Args:
embed_dim (int): The dimensionality of the embedding space.
num_heads (int): The number of attention heads.
bias (bool, optional): Whether to include bias terms in the layers. Defaults to True.
eps (float, optional): A small value added for numerical stability in layer normalization. Defaults to 1e-6.
"""
super().__init__()
self.ln_1 = LayerNorm(embed_dim, elementwise_affine=False, eps=eps)
self.attn = SelfAttentionWithRotaryEmbedding(
embed_dim, num_heads=num_heads, bias=bias, eps=eps
)
self.ln_2 = LayerNorm(embed_dim, elementwise_affine=False, eps=eps)
self.mlp = SwiGLUMLP(embed_dim, embed_dim * 4, bias=bias)
@classmethod
def from_config(cls, cfg):
"""
Create an instance of the class using the provided configuration.
Args:
cfg: A configuration object containing the following attributes:
- n_embd (int): The size of the embedding dimension.
- n_head (int): The number of attention heads.
- bias (bool): Whether to include a bias term.
- eps (float): A small value added for numerical stability.
Returns:
An instance of the class initialized with the specified configuration.
"""
return cls(
cfg.n_embd,
num_heads=cfg.n_head,
bias=cfg.bias,
eps=cfg.eps,
)
def forward(
self,
x,
freqs_cis: torch.Tensor,
attn_mask=None,
is_causal: bool = True,
kv_cache: Optional[Cache] = None,
curr_pos_id: Optional[torch.Tensor] = None,
decode: bool = False,
):
"""
Forward pass for the transformer model.
Args:
x (torch.Tensor): Input tensor.
freqs_cis (torch.Tensor): Precomputed sinusoidal positional encodings.
attn_mask (Optional[torch.Tensor], optional): Attention mask to apply during self-attention.
Defaults to None.
is_causal (bool, optional): Whether to apply causal masking for autoregressive decoding.
Defaults to True.
kv_cache (Optional[Cache], optional): Key-value cache for efficient decoding.
Defaults to None.
curr_pos_id (Optional[torch.Tensor], optional): Current position IDs for decoding.
Defaults to None.
decode (bool, optional): Whether the model is in decoding mode.
Defaults to False.
Returns:
torch.Tensor: Output tensor.
"""
out = self.attn(
self.ln_1(x),
freqs_cis=freqs_cis,
attn_mask=attn_mask,
is_causal=is_causal,
kv_cache=kv_cache,
curr_pos_id=curr_pos_id,
decode=decode,
)
x = x + out
x = x + self.mlp(self.ln_2(x))
return x