Spaces:
Running
on
L40S
Running
on
L40S
from typing import Optional | |
import torch | |
import torch.nn.functional as F | |
def apply_rotary_emb( | |
x: torch.Tensor, | |
freqs_cis: torch.Tensor, | |
curr_pos_id: Optional[torch.Tensor] = None, | |
) -> torch.Tensor: | |
""" | |
Applies rotary positional embeddings to the input tensor. | |
Args: | |
x (torch.Tensor): The input tensor. | |
freqs_cis (torch.Tensor): A tensor containing the precomputed rotary | |
frequency components. | |
curr_pos_id (Optional[torch.Tensor]): An optional tensor specifying the | |
current position IDs to use for selecting a subset of `freqs_cis`. | |
If None, the function uses the last `seq_len` positions. | |
Returns: | |
torch.Tensor: The input tensor `x` with rotary positional embeddings | |
applied. | |
""" | |
x_ = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2)) | |
if curr_pos_id is None: | |
freqs_cis = freqs_cis[:, -x.shape[2] :].unsqueeze(1) | |
else: | |
freqs_cis = freqs_cis[:, curr_pos_id, :].unsqueeze(1) | |
y = torch.view_as_real(x_ * freqs_cis).flatten(3) | |
return y.type_as(x) | |
def precompute_freqs_cis(dim: int, t: torch.Tensor, theta: float = 10000.0): | |
"""Calculate rotary embedding cos & sin, this is useful when every blocks in the network use same positional embedding. | |
Args: | |
dim (int): dimension of the single head of the transformer block | |
t (torch.Tensor): position ids [..., L] | |
theta (int, optional): rope theta. Defaults to 10000. | |
Returns: | |
Tuple[torch.Tensor, torch.Tensor]: tuple of cos and sin of rope | |
""" | |
assert dim % 2 == 0, ( | |
"RoPE only supports embedding dimensions that are multiples of 2" | |
) | |
freqs = 1.0 / ( | |
theta ** (torch.arange(0, dim, 2, dtype=torch.float32, device=t.device) / dim) | |
) | |
# [batch_size, seq_len, num_freqs] | |
freqs = torch.outer(t.contiguous().view(-1), freqs).reshape(*t.shape, -1) | |
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) | |
return freqs_cis | |
def scaled_dot_product_attention_with_rotary_emb( | |
q: torch.Tensor, | |
k: torch.Tensor, | |
v: torch.Tensor, | |
freqs_cis: torch.Tensor, | |
attn_mask: Optional[torch.Tensor] = None, | |
curr_pos_id: Optional[torch.Tensor] = None, | |
is_causal: bool = False, | |
) -> torch.Tensor: | |
""" | |
Computes scaled dot product attention on query, key and value tensors | |
with rotary position embeddings on query and key. | |
Without caching enabled, | |
q should be (bs, nh, seqlen, hd). | |
k and v should stay unchanged, (bs, nh, seqlen, hd). | |
With caching enabled, | |
q should be (bs, nh, 1, hd). | |
k and v should stay unchanged, (bs, nh, 1, hd). | |
causal_mask must be False. | |
""" | |
q = apply_rotary_emb(q, freqs_cis, curr_pos_id=curr_pos_id) # (bs, nh, l, hd) | |
k = apply_rotary_emb(k, freqs_cis, curr_pos_id=None) # (bs, nh, s + l, hd) | |
x = F.scaled_dot_product_attention( | |
q, | |
k, | |
v, | |
attn_mask=attn_mask, | |
dropout_p=0.0, | |
is_causal=is_causal and attn_mask is None, | |
) | |
return x | |