import torch from tqdm import tqdm from transformers import CLIPTextModelWithProjection, CLIPTokenizerFast from cube3d.inference.logits_postprocesses import process_logits from cube3d.inference.utils import load_config, load_model_weights, parse_structured from cube3d.model.autoencoder.one_d_autoencoder import OneDAutoEncoder from cube3d.model.gpt.dual_stream_roformer import DualStreamRoformer from cube3d.model.transformers.cache import Cache class Engine: def __init__( self, config_path: str, gpt_ckpt_path: str, shape_ckpt_path: str, device: torch.device, ): """ Initializes the inference engine with the given configuration and checkpoint paths. Args: config_path (str): Path to the configuration file. gpt_ckpt_path (str): Path to the GPT model checkpoint file. shape_ckpt_path (str): Path to the shape model checkpoint file. device (torch.device): The device to run the models on (e.g., 'cpu' or 'cuda'). Attributes: cfg (dict): Loaded configuration from the config file. device (torch.device): The device to run the models on. gpt_model (DualStreamRoformer): The GPT model initialized and loaded with weights. shape_model (OneDAutoEncoder): The shape model initialized and loaded with weights. text_model (CLIPTextModelWithProjection): The text model initialized from a pretrained model. text_tokenizer (CLIPTokenizerFast): The tokenizer for the text model. max_new_tokens (int): Maximum number of new tokens for the shape model. min_id (int): Minimum ID for the shape model codes. max_id (int): Maximum ID for the shape model codes. """ self.cfg = load_config(config_path) self.device = device self.gpt_model = DualStreamRoformer( parse_structured(DualStreamRoformer.Config, self.cfg.gpt_model) ) load_model_weights( self.gpt_model, gpt_ckpt_path, ) self.gpt_model = self.gpt_model.eval().to(self.device) self.shape_model = OneDAutoEncoder( parse_structured(OneDAutoEncoder.Config, self.cfg.shape_model) ) load_model_weights( self.shape_model, shape_ckpt_path, ) self.shape_model = self.shape_model.eval().to(self.device) # copy vq codebook to gpt with torch.no_grad(): codebook = self.shape_model.bottleneck.block.get_codebook() codebook = self.gpt_model.shape_proj(codebook).detach() self.gpt_model.transformer.wte.weight.data[: codebook.shape[0]] = codebook self.text_model = CLIPTextModelWithProjection.from_pretrained( self.cfg.text_model_pretrained_model_name_or_path, force_download=False, device_map=self.device, ).eval() self.text_tokenizer = CLIPTokenizerFast.from_pretrained( self.cfg.text_model_pretrained_model_name_or_path ) self.max_new_tokens = self.shape_model.cfg.num_encoder_latents self.min_id = 0 self.max_id = self.shape_model.cfg.num_codes @torch.inference_mode() def prepare_inputs(self, prompts: list[str], guidance_scale: float): """ Prepares the input embeddings for the model based on the provided prompts and guidance scale. Args: prompts (list[str]): A list of prompt strings to be encoded. guidance_scale (float): A scaling factor for guidance. If greater than 0.0, additional processing is applied. Returns: tuple: A tuple containing: - embed (torch.Tensor): The encoded input embeddings. - cond (torch.Tensor): The condition embeddings, which may include unconditional embeddings if guidance_scale is greater than 0.0. """ prompt_embeds = self.run_clip(prompts) with torch.autocast(self.device.type, dtype=torch.bfloat16): embed = self.encode_input(prompt_embeds, self.gpt_model.shape_bos_id) cond = prompt_embeds if guidance_scale > 0.0: embed = torch.cat([embed, embed], dim=0) uncond_embeds = self.run_clip([""] * len(prompts)) cond = torch.cat([prompt_embeds, uncond_embeds], dim=0) return embed, cond @torch.inference_mode() def run_clip(self, text_inputs): """ Processes the given text inputs using a text tokenizer and a text model, and returns the encoded text embeddings. Args: text_inputs (str or List[str]): The input text or list of texts to be processed. Returns: torch.Tensor: The encoded text embeddings. """ text_inputs = self.text_tokenizer( text_inputs, max_length=self.text_tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt", ) with torch.no_grad(): text_inputs = {k: v.to(self.device) for k, v in text_inputs.items()} # use full precision for text encoder with torch.autocast(device_type=self.device.type, enabled=False): encoded = self.text_model(**text_inputs) if self.gpt_model.cfg.use_pooled_text_embed: embed = encoded.text_embeds.unsqueeze(1) # [bs, 1, 512] else: embed = encoded.last_hidden_state # [bs, 77, 512] embed = self.gpt_model.encode_text(embed) return embed @torch.inference_mode() def encode_input(self, inputs: torch.Tensor, bos: int): """ Encodes the beginning of sequence (BOS) token for the given input tensor. Args: inputs (torch.Tensor): The input tensor containing sequences. bos (int): The beginning of sequence token ID. Returns: torch.Tensor: The encoded BOS token embeddings. """ b = inputs.shape[0] bos_embed = self.gpt_model.encode_token( torch.full( (b, 1), fill_value=bos, dtype=torch.long, device=self.device, ) ) return bos_embed @torch.inference_mode() def run_gpt( self, prompts: list[str], use_kv_cache: bool, guidance_scale: float = 3.0, top_p: float = None, ): """ Generates text using a GPT model based on the provided prompts. Args: prompts (list[str]): A list of input prompts to generate text from. use_kv_cache (bool): Whether to use key-value caching for faster generation. guidance_scale (float, optional): The scale for guidance during generation. Default is 3.0. top_p (float, optional): The cumulative probability threshold for nucleus sampling. If None, argmax selection is performed (deterministic generation). Otherwise, smallest set of tokens with cumulative probability ≥ top_p are kept (stochastic generation). Returns: torch.Tensor: A tensor containing the generated token IDs. """ embed, cond = self.prepare_inputs(prompts, guidance_scale) output_ids = [] batch_size, input_seq_len, dim = embed.shape max_seq_len = input_seq_len + self.max_new_tokens embed_buffer = torch.zeros( (batch_size, max_seq_len, dim), dtype=embed.dtype, device=embed.device ) embed_buffer[:, :input_seq_len, :].copy_(embed) cond_len = cond.shape[1] kv_cache = None if use_kv_cache: kv_cache = self.gpt_model.init_kv_cache( batch_size, cond_len, self.max_new_tokens + 1, # +1 for the BOS token torch.bfloat16, embed.device, ) with torch.autocast(self.device.type, dtype=torch.bfloat16): for i in tqdm(range(self.max_new_tokens), desc=f"generating"): curr_pos_id = torch.tensor([i], dtype=torch.long, device=embed.device) logits = self.gpt_model( embed_buffer, cond, kv_cache=kv_cache, curr_pos_id=curr_pos_id if use_kv_cache else None, decode=(i > 0) if use_kv_cache else False, ) if use_kv_cache: logits = logits[:, 0, ...] else: logits = logits[:, i, ...] logits = logits[..., self.min_id : self.max_id] if guidance_scale > 0.0: logits, uncond_logits = logits.float().chunk(2, dim=0) gamma = ( guidance_scale * (self.max_new_tokens - i) / self.max_new_tokens ) logits = (1 + gamma) * logits - gamma * uncond_logits next_id = process_logits( logits, top_p=top_p, ) output_ids.append(next_id) next_embed = self.gpt_model.encode_token(next_id) if guidance_scale > 0.0: next_embed = torch.cat([next_embed, next_embed], dim=0) embed_buffer[:, i + input_seq_len, :].copy_(next_embed.squeeze(1)) return torch.cat(output_ids, dim=1) @torch.inference_mode() def run_shape_decode( self, output_ids: torch.Tensor, resolution_base: float = 8.0, chunk_size: int = 100_000, ): """ Decodes the shape from the given output IDs and extracts the geometry. Args: output_ids (torch.Tensor): The tensor containing the output IDs. resolution_base (float, optional): The base resolution for geometry extraction. Defaults to 8.43. chunk_size (int, optional): The chunk size for processing. Defaults to 100,000. Returns: tuple: A tuple containing the vertices and faces of the mesh. """ shape_ids = ( output_ids[:, : self.shape_model.cfg.num_encoder_latents, ...] .clamp_(0, self.shape_model.cfg.num_codes - 1) .view(-1, self.shape_model.cfg.num_encoder_latents) ) latents = self.shape_model.decode_indices(shape_ids) mesh_v_f, _ = self.shape_model.extract_geometry( latents, resolution_base=resolution_base, chunk_size=chunk_size, use_warp=True, ) return mesh_v_f @torch.inference_mode() def t2s( self, prompts: list[str], use_kv_cache: bool, guidance_scale: float = 3.0, resolution_base: float = 8.0, chunk_size: int = 100_000, top_p: float = None, ): """ Generates a 3D mesh from text prompts using a GPT model and shape decoder. Args: prompts (list[str]): A list of text prompts to guide the generation. use_kv_cache (bool): Whether to use key-value caching for the GPT model. guidance_scale (float, optional): The scale of guidance for the GPT model. Default is 3.0. resolution_base (float, optional): The base resolution for the shape decoder. Default is 8.0. chunk_size (int, optional): The chunk size for processing the shape decoding. Default is 100,000. top_p (float, optional): The cumulative probability threshold for nucleus sampling. If None, argmax selection is performed (deterministic generation). Otherwise, smallest set of tokens with cumulative probability ≥ top_p are kept (stochastic generation). Returns: mesh_v_f: The generated 3D mesh vertices and faces. """ output_ids = self.run_gpt(prompts, use_kv_cache, guidance_scale, top_p) with torch.autocast(self.device.type, dtype=torch.bfloat16): mesh_v_f = self.run_shape_decode(output_ids, resolution_base, chunk_size) return mesh_v_f class EngineFast(Engine): def __init__( self, config_path: str, gpt_ckpt_path: str, shape_ckpt_path: str, device: torch.device, ): """ Initializes the inference engine with the given configuration and checkpoint paths. Args: config_path (str): Path to the configuration file. gpt_ckpt_path (str): Path to the GPT checkpoint file. shape_ckpt_path (str): Path to the shape checkpoint file. device (torch.device): The device to run the inference on (e.g., CPU or CUDA). """ super().__init__(config_path, gpt_ckpt_path, shape_ckpt_path, device) # CUDA Graph params self.graph = torch.cuda.CUDAGraph() self.embed_buffer = torch.Tensor() self.cond_buffer = torch.Tensor() self.logits_buffer = torch.Tensor() self.curr_pos_id = torch.tensor([0], dtype=torch.long, device=self.device) self.kv_cache: list[Cache] = [] self._warmup_and_capture_graph() def _warmup_and_capture_graph(self): """ Warms up the model by running a series of forward passes and captures the CUDA graph for efficient execution. This method performs the following steps: 1. Prepares the input embeddings and conditions using a warmup prompt. 2. Initializes buffers for embeddings and conditions. 3. Initializes the key-value cache for the GPT model. 4. Runs a series of warmup passes to prefill the model and generate logits. 5. Captures the CUDA graph for the model's forward pass to optimize future executions. """ warmup_prompt = "A cube" embed, cond = self.prepare_inputs([warmup_prompt], guidance_scale=3.0) batch_size, input_seq_len, dim = embed.shape max_seq_len = input_seq_len + self.max_new_tokens self.embed_buffer = torch.zeros( (batch_size, max_seq_len, dim), dtype=embed.dtype, device=self.device ) self.embed_buffer[:, :input_seq_len, :].copy_(embed) self.cond_buffer = torch.empty_like(cond) self.cond_buffer.copy_(cond) cond_len = self.cond_buffer.shape[1] # Initialize kv_cache for the first time self.kv_cache = self.gpt_model.init_kv_cache( batch_size, cond_len, self.max_new_tokens + 1, # +1 for the BOS token torch.bfloat16, self.device, ) num_warmup_passes = 10 with torch.autocast(self.device.type, dtype=torch.bfloat16): self._set_curr_pos_id(0) _ = self._prefill_and_return_logits() for x in range(1, num_warmup_passes): self._set_curr_pos_id(x) self.logits_buffer = self.gpt_model( embed=self.embed_buffer, cond=self.cond_buffer, kv_cache=self.kv_cache, curr_pos_id=self.curr_pos_id, decode=True, ) side_stream = torch.cuda.Stream(device=self.device) with torch.cuda.graph(self.graph, stream=side_stream): with torch.autocast(self.device.type, dtype=torch.bfloat16): self.logits_buffer = self.gpt_model( embed=self.embed_buffer, cond=self.cond_buffer, kv_cache=self.kv_cache, curr_pos_id=self.curr_pos_id, decode=True, ) def _reset_kv_cache(self): """ Resets the key-value cache by setting all key and value states to zero. This method iterates through each cache in the `kv_cache` attribute and calls the `zero_()` method on both `key_states` and `value_states` to reset them to their initial state. """ for cache in self.kv_cache: cache.key_states.zero_() cache.value_states.zero_() def _prefill_and_return_logits(self) -> torch.Tensor: """ Prefills the model's key-value cache and returns the logits. This method resets the key-value cache and then performs a forward pass through the GPT model in eager mode to prefill the logits. Returns: torch.Tensor: The prefilled logits tensor with the first dimension removed. """ self._reset_kv_cache() # Prefill is always eager prefill_logits = self.gpt_model( embed=self.embed_buffer, cond=self.cond_buffer, kv_cache=self.kv_cache, curr_pos_id=self.curr_pos_id, decode=False, ) return prefill_logits[:, 0, ...] def _set_curr_pos_id(self, pos: int): """ Set the current position ID. This method updates the `curr_pos_id` attribute with the given position. Args: pos (int): The position ID to set. """ self.curr_pos_id.copy_( torch.tensor([pos], dtype=torch.long, device=self.device) ) def run_gpt( self, prompts: list[str], use_kv_cache: bool, guidance_scale: float = 3.0, top_p: float = None ): """ Runs the GPT model to generate text based on the provided prompts. Args: prompts (list[str]): A list of input prompts for the GPT model. Only a single prompt is supported. use_kv_cache (bool): Flag indicating whether to use key-value caching. (Currently not used) guidance_scale (float, optional): The scale factor for guidance. Default is 3.0. top_p (float, optional): The cumulative probability threshold for nucleus sampling. If None, argmax selection is performed. Otherwise, smallest set of tokens with cumulative probability ≥ top_p are kept. Returns: torch.Tensor: A tensor containing the generated output token IDs. Raises: AssertionError: If the batch size is greater than 1. """ embed, cond = self.prepare_inputs(prompts, guidance_scale) assert len(prompts) == 1, "batch size > 1 not support for EngineFast" batch_size, input_seq_len, _ = embed.shape self.embed_buffer.zero_() self.embed_buffer[:, :input_seq_len, :].copy_(embed) assert self.cond_buffer.shape == cond.shape self.cond_buffer.copy_(cond) output_ids = torch.zeros( (batch_size // 2, self.max_new_tokens), dtype=torch.int, device=self.device ) with torch.autocast(self.device.type, dtype=torch.bfloat16): self._set_curr_pos_id(0) logits = self._prefill_and_return_logits() logits = logits[..., self.min_id : self.max_id] if guidance_scale > 0.0: logits, uncond_logits = logits.float().chunk(2, dim=0) gamma = guidance_scale logits = (1 + gamma) * logits - gamma * uncond_logits next_id = process_logits(logits, top_p=top_p) output_ids[:, 0] = next_id.squeeze() next_embed = self.gpt_model.encode_token(next_id) next_embed = next_embed.repeat(2, 1, 1) self.embed_buffer[:, input_seq_len, :].copy_(next_embed.squeeze(1)) for i in tqdm( range(1, self.max_new_tokens), desc=f"generating" ): self._set_curr_pos_id(i) self.graph.replay() logits = self.logits_buffer[:, 0, ...] logits = logits[..., self.min_id : self.max_id] if guidance_scale > 0.0: logits, uncond_logits = logits.float().chunk(2, dim=0) gamma = ( guidance_scale * (self.max_new_tokens - i) / self.max_new_tokens ) logits = (1 + gamma) * logits - gamma * uncond_logits next_id = process_logits(logits, top_p=top_p) output_ids[:, i] = next_id.squeeze() next_embed = self.gpt_model.encode_token(next_id) next_embed = next_embed.repeat(2, 1, 1) self.embed_buffer[:, i + input_seq_len, :].copy_(next_embed.squeeze(1)) return output_ids