import math import torch import torch.nn as nn class PhaseModulatedFourierEmbedder(torch.nn.Module): def __init__( self, num_freqs: int, input_dim: int = 3, ): """ Initializes the PhaseModulatedFourierEmbedder class. Args: num_freqs (int): The number of frequencies to be used. input_dim (int, optional): The dimension of the input. Defaults to 3. Attributes: weight (torch.nn.Parameter): The weight parameter initialized with random values. carrier (torch.Tensor): The carrier frequencies calculated based on the Nyquist-Shannon sampling theorem. out_dim (int): The output dimension calculated based on the input dimension and number of frequencies. """ super().__init__() self.weight = nn.Parameter( torch.randn(input_dim, num_freqs) * math.sqrt(0.5 * num_freqs) ) # NOTE this is the highest frequency we can get (2 for peaks, 2 for zeros, and 4 for interpolation points), see also https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem carrier = (num_freqs / 8) ** torch.linspace(1, 0, num_freqs) carrier = (carrier + torch.linspace(0, 1, num_freqs)) * 2 * torch.pi self.register_buffer("carrier", carrier, persistent=False) self.out_dim = input_dim * (num_freqs * 2 + 1) def forward(self, x): """ Perform the forward pass of the embedder model. Args: x (torch.Tensor): Input tensor of shape (batch_size, ..., input_dim). Returns: torch.Tensor: Output tensor of shape (batch_size, ..., output_dim) where output_dim = input_dim + 2 * input_dim. """ m = x.float().unsqueeze(-1) fm = (m * self.weight).view(*x.shape[:-1], -1) pm = (m * 0.5 * torch.pi + self.carrier).view(*x.shape[:-1], -1) embedding = torch.cat([x, fm.cos() + pm.cos(), fm.sin() + pm.sin()], dim=-1) return embedding