from typing import Literal, Union import numpy as np import torch import warp as wp def generate_dense_grid_points( bbox_min: np.ndarray, bbox_max: np.ndarray, resolution_base: float, indexing: Literal["xy", "ij"] = "ij", ) -> tuple[np.ndarray, list[int], np.ndarray]: """ Generate a dense grid of points within a bounding box. Parameters: bbox_min (np.ndarray): The minimum coordinates of the bounding box (3D). bbox_max (np.ndarray): The maximum coordinates of the bounding box (3D). resolution_base (float): The base resolution for the grid. The number of cells along each axis will be 2^resolution_base. indexing (Literal["xy", "ij"], optional): The indexing convention for the grid. "xy" for Cartesian indexing, "ij" for matrix indexing. Default is "ij". Returns: tuple: A tuple containing: - xyz (np.ndarray): A 2D array of shape (N, 3) where N is the total number of grid points. Each row represents the (x, y, z) coordinates of a grid point. - grid_size (list): A list of three integers representing the number of grid points along each axis. - length (np.ndarray): The length of the bounding box along each axis. """ length = bbox_max - bbox_min num_cells = np.exp2(resolution_base) x = np.linspace(bbox_min[0], bbox_max[0], int(num_cells) + 1, dtype=np.float32) y = np.linspace(bbox_min[1], bbox_max[1], int(num_cells) + 1, dtype=np.float32) z = np.linspace(bbox_min[2], bbox_max[2], int(num_cells) + 1, dtype=np.float32) [xs, ys, zs] = np.meshgrid(x, y, z, indexing=indexing) xyz = np.stack((xs, ys, zs), axis=-1) xyz = xyz.reshape(-1, 3) grid_size = [int(num_cells) + 1, int(num_cells) + 1, int(num_cells) + 1] return xyz, grid_size, length def marching_cubes_with_warp( grid_logits: torch.Tensor, level: float, device: Union[str, torch.device] = "cuda", max_verts: int = 3_000_000, max_tris: int = 3_000_000, ) -> tuple[np.ndarray, np.ndarray]: """ Perform the marching cubes algorithm on a 3D grid with warp support. Args: grid_logits (torch.Tensor): A 3D tensor containing the grid logits. level (float): The threshold level for the isosurface. device (Union[str, torch.device], optional): The device to perform the computation on. Defaults to "cuda". max_verts (int, optional): The maximum number of vertices. Defaults to 3,000,000. max_tris (int, optional): The maximum number of triangles. Defaults to 3,000,000. Returns: Tuple[np.ndarray, np.ndarray]: A tuple containing the vertices and faces of the isosurface. """ if isinstance(device, torch.device): device = str(device) assert grid_logits.ndim == 3 if "cuda" in device: assert wp.is_cuda_available() else: raise ValueError( f"Device {device} is not supported for marching_cubes_with_warp" ) dim = grid_logits.shape[0] field = wp.from_torch(grid_logits) iso = wp.MarchingCubes( nx=dim, ny=dim, nz=dim, max_verts=int(max_verts), max_tris=int(max_tris), device=device, ) iso.surface(field=field, threshold=level) vertices = iso.verts.numpy() faces = iso.indices.numpy().reshape(-1, 3) return vertices, faces