import math import torch import torch.nn as nn from cube3d.model.transformers.norm import LayerNorm, RMSNorm def init_linear(module, embed_dim: int): """ Initializes the weights and biases of a given linear module. Args: module (nn.Module): The module to initialize. Expected to be an instance of nn.Linear. embed_dim (int): The embedding dimension used to calculate the standard deviation for weight initialization. Returns: None """ if isinstance(module, nn.Linear): nn.init.normal_(module.weight, std=math.sqrt(1.0 / embed_dim)) if module.bias is not None: torch.nn.init.zeros_(module.bias) def init_tfixup(module: nn.Module, num_layers: int): """Special initialization from https://www.cs.toronto.edu/~mvolkovs/ICML2020_tfixup.pdf Args: module (nn.Module): decoder/encoder module num_layers (int): number of layers in the module """ with torch.no_grad(): for pn, p in module.named_parameters(): if ( pn.endswith("c_proj.weight") or pn.endswith("up_proj.weight") or pn.endswith("down_proj.weight") ): p *= (4 * num_layers) ** (-0.25) elif pn.endswith("c_v.weight"): p *= (4 * num_layers) ** (-0.25) * math.sqrt(2) class MLP(nn.Module): def __init__(self, embed_dim, hidden_dim, bias=True, approximate="none"): """ MLP with GELU activation function." """ super().__init__() self.up_proj = nn.Linear(embed_dim, hidden_dim, bias=bias) self.down_proj = nn.Linear(hidden_dim, embed_dim, bias=bias) self.act_fn = nn.GELU(approximate=approximate) def forward(self, x): return self.down_proj(self.act_fn(self.up_proj(x))) class SelfAttention(nn.Module): def __init__( self, embed_dim: int, num_heads: int, bias: bool = True, eps: float = 1e-6, ): """ Initializes the self attention mechanism. Args: embed_dim (int): The dimensionality of the embedding space. num_heads (int): The number of attention heads. bias (bool, optional): Whether to include bias terms in the linear layers. Defaults to True. eps (float, optional): A small value added for numerical stability. Defaults to 1e-6. Raises: AssertionError: If `embed_dim` is not divisible by `num_heads`. """ super().__init__() assert embed_dim % num_heads == 0 self.num_heads = num_heads self.c_qk = nn.Linear(embed_dim, 2 * embed_dim, bias=bias) self.c_v = nn.Linear(embed_dim, embed_dim, bias=bias) self.c_proj = nn.Linear(embed_dim, embed_dim, bias=bias) head_dim = embed_dim // num_heads self.q_norm = RMSNorm(head_dim) self.k_norm = RMSNorm(head_dim) def forward(self, x, attn_mask=None, is_causal: bool = False): """ Performs the forward pass of the attention mechanism. Args: x (torch.Tensor): Input tensor. attn_mask (Optional[torch.Tensor]): Attention mask to apply. Default is None. is_causal (bool): If True, applies a causal mask to prevent attending to future positions. Default is False. Returns: torch.Tensor: Output tensor after applying the attention mechanism and projection. """ b, l, d = x.shape q, k = self.c_qk(x).chunk(2, dim=-1) v = self.c_v(x) q = q.view(b, l, self.num_heads, -1).transpose(1, 2) # (B, nh, T, hs) k = k.view(b, l, self.num_heads, -1).transpose(1, 2) # (B, nh, T, hs) v = v.view(b, l, self.num_heads, -1).transpose(1, 2) # (B, nh, T, hs) q = self.q_norm(q) k = self.k_norm(k) is_causal = is_causal and attn_mask is None y = torch.nn.functional.scaled_dot_product_attention( q, k, v, attn_mask=attn_mask, dropout_p=0.0, is_causal=is_causal, ) y = y.transpose(1, 2).contiguous().view(b, l, d) y = self.c_proj(y) return y class CrossAttention(nn.Module): def __init__( self, embed_dim: int, num_heads: int, q_dim=None, kv_dim=None, bias: bool = True, ): """ Initializes the cross attention mechanism. Args: embed_dim (int): The dimensionality of the embedding space. num_heads (int): The number of attention heads. q_dim (int, optional): The dimensionality of the query input. Defaults to `embed_dim`. kv_dim (int, optional): The dimensionality of the key and value inputs. Defaults to `embed_dim`. bias (bool, optional): Whether to include a bias term in the linear projections. Defaults to True. Raises: AssertionError: If `embed_dim` is not divisible by `num_heads`. """ super().__init__() assert embed_dim % num_heads == 0 q_dim = q_dim or embed_dim kv_dim = kv_dim or embed_dim self.c_q = nn.Linear(q_dim, embed_dim, bias=bias) self.c_k = nn.Linear(kv_dim, embed_dim, bias=bias) self.c_v = nn.Linear(kv_dim, embed_dim, bias=bias) self.c_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.num_heads = num_heads def forward(self, x, c, attn_mask=None, is_causal: bool = False): """ Forward pass for the attention mechanism. Args: x (torch.Tensor): Input tensor of shape. c (torch.Tensor): Context tensor. attn_mask (torch.Tensor, optional): Attention mask. Defaults to None. is_causal (bool, optional): Whether to apply causal masking. Defaults to False. Returns: torch.Tensor: Output tensor. """ q, k = self.c_q(x), self.c_k(c) v = self.c_v(c) b, l, d = q.shape s = k.shape[1] q = q.view(b, l, self.num_heads, -1).transpose(1, 2) # (B, nh, T, hs) k = k.view(b, s, self.num_heads, -1).transpose(1, 2) # (B, nh, T, hs) v = v.view(b, s, self.num_heads, -1).transpose(1, 2) # (B, nh, T, hs) y = torch.nn.functional.scaled_dot_product_attention( q, k, v, attn_mask=attn_mask, dropout_p=0.0, is_causal=(attn_mask is not None) and is_causal, ) y = y.transpose(1, 2).contiguous().view(b, l, d) y = self.c_proj(y) return y class EncoderLayer(nn.Module): def __init__( self, embed_dim: int, num_heads: int, bias: bool = True, eps: float = 1e-6, ) -> None: """ Initializes the EncoderLayer module. Args: embed_dim (int): The dimensionality of the embedding space. num_heads (int): The number of attention heads. bias (bool, optional): Whether to include bias terms in the layers. Defaults to True. eps (float, optional): A small value added for numerical stability in normalization layers. Defaults to 1e-6. """ super().__init__() self.ln_1 = LayerNorm(embed_dim, elementwise_affine=False, eps=eps) self.attn = SelfAttention(embed_dim, num_heads, bias=bias, eps=eps) self.ln_2 = LayerNorm(embed_dim, elementwise_affine=False, eps=eps) self.mlp = MLP(embed_dim=embed_dim, hidden_dim=embed_dim * 4, bias=bias) def forward(self, x, attn_mask=None, is_causal: bool = False): """ Performs the forward pass of the transformer block. Args: x (torch.Tensor): The input tensor. attn_mask (torch.Tensor, optional): An optional attention mask tensor to apply during the attention computation. Default is None. is_causal (bool, optional): If True, applies a causal mask to prevent attention to future positions. Default is False. Returns: torch.Tensor: The output tensor of the same shape as the input. """ x = x + self.attn(self.ln_1(x), attn_mask=attn_mask, is_causal=is_causal) x = x + self.mlp(self.ln_2(x)) return x class EncoderCrossAttentionLayer(nn.Module): def __init__( self, embed_dim: int, num_heads: int, q_dim=None, kv_dim=None, bias: bool = True, eps: float = 1e-6, ) -> None: """ Initializes the EncoderAttentionLayer module with cross-attention, and a feed-forward MLP. Args: embed_dim (int): The dimensionality of the embedding space. num_heads (int): The number of attention heads. q_dim (int, optional): Dimensionality of the query input. Defaults to `embed_dim`. kv_dim (int, optional): Dimensionality of the key and value inputs. Defaults to `embed_dim`. bias (bool, optional): Whether to include bias terms in the layers. Defaults to True. eps (float, optional): A small value added to the denominator for numerical stability in layer normalization. Defaults to 1e-6. """ super().__init__() q_dim = q_dim or embed_dim kv_dim = kv_dim or embed_dim self.attn = CrossAttention( embed_dim, num_heads, q_dim=q_dim, kv_dim=kv_dim, bias=bias, ) self.ln_1 = LayerNorm(q_dim, elementwise_affine=False, eps=eps) self.ln_2 = LayerNorm(kv_dim, elementwise_affine=False, eps=eps) self.ln_f = LayerNorm(embed_dim, elementwise_affine=False, eps=eps) self.mlp = MLP(embed_dim=embed_dim, hidden_dim=embed_dim * 4, bias=bias) def forward(self, x, c, attn_mask=None, is_causal: bool = False): """ Forward pass for the attention mechanism. Args: x (torch.Tensor): The input tensor to the attention mechanism. c (torch.Tensor): The context tensor used for cross-attention. attn_mask (torch.Tensor, optional): An optional attention mask to control which positions can attend to others. Defaults to None. is_causal (bool, optional): If True, applies a causal mask to prevent attending to future positions. Defaults to False. Returns: torch.Tensor: The output tensor after applying attention and MLP layers. """ x = x + self.attn( self.ln_1(x), self.ln_2(c), attn_mask=attn_mask, is_causal=is_causal ) x = x + self.mlp(self.ln_f(x)) return x