import torch import torch.nn as nn def fused_rms_norm(x: torch.Tensor, weight: nn.Parameter, eps: float): """ Applies a fused Root Mean Square (RMS) normalization to the input tensor. Args: x (torch.Tensor): The input tensor to be normalized. Expected to have at least one dimension. weight (nn.Parameter): A learnable parameter used to scale the normalized tensor. Its shape must be broadcastable to the shape of `x`. eps (float): A small constant added to the denominator for numerical stability during normalization. Returns: torch.Tensor: The normalized and scaled tensor with the same shape as `x`. """ x = x.float() return (x * torch.rsqrt((x * x).mean(-1, keepdim=True).add_(eps))) * weight class LayerNorm(nn.LayerNorm): def forward(self, input: torch.Tensor): """ Wrapper to ensure that the input tensor is cast to float before normalization. """ y = super().forward(input.float()) return y.type_as(input) class RMSNorm(nn.Module): def __init__(self, dim: int, eps: float = 1e-5, elementwise_affine: bool = True): """ Initializes the normalization layer. Args: dim (int): The number of features in the input tensor. eps (float, optional): A small value added to the denominator for numerical stability. Defaults to 1e-5. elementwise_affine (bool, optional): If True, this layer will have learnable per-element affine parameters. Defaults to True. """ super().__init__() self.eps = eps self.weight = nn.Parameter(torch.ones(dim), requires_grad=elementwise_affine) def forward(self, x): return fused_rms_norm(x, weight=self.weight, eps=self.eps).type_as(x)