Spaces:
Sleeping
Sleeping
feat: ✨ new annotators added from supervision
Browse filesSigned-off-by: Onuralp SEZER <[email protected]>
- .gitignore +9 -0
- app.py +158 -76
.gitignore
CHANGED
@@ -158,3 +158,12 @@ cython_debug/
|
|
158 |
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
159 |
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
160 |
#.idea/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
159 |
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
160 |
#.idea/
|
161 |
+
|
162 |
+
# Mac
|
163 |
+
.DS_Store
|
164 |
+
.AppleDouble
|
165 |
+
.LSOverride
|
166 |
+
|
167 |
+
# YoloV8 files
|
168 |
+
yolov8s-seg.pt
|
169 |
+
yolov8s.pt
|
app.py
CHANGED
@@ -1,35 +1,57 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import supervision as sv
|
|
|
|
|
3 |
from ultralytics import YOLO
|
4 |
-
import os #added for cache_examples
|
5 |
-
from PIL import Image, ImageColor
|
6 |
-
import numpy as np
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
labels = [
|
14 |
-
f"{model.model.names[class_id]} {confidence:.2f}"
|
15 |
-
for class_id, confidence in zip(detections.class_id, detections.confidence)
|
16 |
-
]
|
17 |
-
|
18 |
-
return detections, labels
|
19 |
-
|
20 |
-
def calculate_crop_dim(a,b):
|
21 |
-
#Calculates the crop dimensions of the image resultant
|
22 |
-
if a>b:
|
23 |
-
width= a
|
24 |
-
height = a
|
25 |
-
else:
|
26 |
-
width = b
|
27 |
-
height = b
|
28 |
-
|
29 |
-
return width, height
|
30 |
-
|
31 |
-
def annotator(img,annotators,colorbb,colormask,colorellipse,colorbc,colorcir,colorlabel):
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
"""
|
34 |
Function that changes the color of annotators
|
35 |
Args:
|
@@ -40,14 +62,10 @@ def annotator(img,annotators,colorbb,colormask,colorellipse,colorbc,colorcir,col
|
|
40 |
annotators: annotated image
|
41 |
"""
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
img = img[...,::-1].copy() # BGR to RGB using numpy
|
46 |
-
|
47 |
|
48 |
detections, labels = load_model(img)
|
49 |
|
50 |
-
|
51 |
if "Blur" in annotators:
|
52 |
# Apply Blur
|
53 |
blur_annotator = sv.BlurAnnotator()
|
@@ -73,8 +91,7 @@ def annotator(img,annotators,colorbb,colormask,colorellipse,colorbc,colorcir,col
|
|
73 |
corner_annotator = sv.BoxCornerAnnotator(sv.Color.from_hex(str(colorbc)))
|
74 |
img = corner_annotator.annotate(img, detections=detections)
|
75 |
|
76 |
-
|
77 |
-
if "Circle" in annotators:
|
78 |
# Draw circle
|
79 |
circle_annotator = sv.CircleAnnotator(sv.Color.from_hex(str(colorcir)))
|
80 |
img = circle_annotator.annotate(img, detections=detections)
|
@@ -85,71 +102,133 @@ def annotator(img,annotators,colorbb,colormask,colorellipse,colorbc,colorcir,col
|
|
85 |
label_annotator = sv.LabelAnnotator(sv.Color.from_hex(str(colorlabel)))
|
86 |
img = label_annotator.annotate(img, detections=detections, labels=labels)
|
87 |
|
|
|
|
|
|
|
|
|
88 |
|
|
|
|
|
|
|
|
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
-
print("size of the pil im=", res_img.size)
|
99 |
-
(v1,v2) = res_img.size
|
100 |
width, height = calculate_crop_dim(v1, v2)
|
101 |
-
print(width, height)
|
102 |
my_img = np.array(res_img)
|
103 |
|
104 |
-
crop_img = my_img[y:y+height, x:x+width]
|
105 |
-
print(type(crop_img))
|
106 |
|
107 |
-
return crop_img[
|
108 |
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
117 |
gr.Markdown("""# Supervision Annotators""")
|
118 |
-
annotators = gr.CheckboxGroup(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
-
|
121 |
-
|
122 |
with gr.Column():
|
123 |
-
|
124 |
with gr.Column():
|
125 |
-
|
126 |
with gr.Column():
|
127 |
-
|
128 |
with gr.Column():
|
129 |
-
|
130 |
with gr.Column():
|
131 |
-
|
132 |
with gr.Column():
|
133 |
-
|
134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
with gr.Row():
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
image_button = gr.Button(value="Annotate it!", variant="primary")
|
143 |
|
144 |
-
image_button.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
gr.Markdown("## Image Examples")
|
147 |
gr.Examples(
|
148 |
-
examples=[
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
|
|
|
|
153 |
inputs=image_input,
|
154 |
outputs=image_output,
|
155 |
fn=annotator,
|
@@ -157,4 +236,7 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue=gr.themes.colors.purple)
|
|
157 |
)
|
158 |
|
159 |
|
160 |
-
|
|
|
|
|
|
|
|
1 |
+
import os # added for cache_examples
|
2 |
+
|
3 |
import gradio as gr
|
4 |
+
import numpy as np
|
5 |
import supervision as sv
|
6 |
+
from PIL import Image
|
7 |
+
from torch import cuda, device
|
8 |
from ultralytics import YOLO
|
|
|
|
|
|
|
9 |
|
10 |
+
# Use GPU if available
|
11 |
+
if cuda.is_available():
|
12 |
+
device = device("cuda")
|
13 |
+
else:
|
14 |
+
device = device("cpu")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
|
17 |
+
def load_model(img):
|
18 |
+
# Load model, get results and return detections/labels
|
19 |
+
model = YOLO("yolov8s-seg.pt")
|
20 |
+
result = model(img, verbose=False, imgsz=1280)[0]
|
21 |
+
detections = sv.Detections.from_ultralytics(result)
|
22 |
+
labels = [
|
23 |
+
f"{model.model.names[class_id]} {confidence:.2f}"
|
24 |
+
for class_id, confidence in zip(detections.class_id, detections.confidence)
|
25 |
+
]
|
26 |
+
|
27 |
+
print(labels)
|
28 |
+
return detections, labels
|
29 |
+
|
30 |
+
|
31 |
+
def calculate_crop_dim(a, b):
|
32 |
+
# Calculates the crop dimensions of the image resultant
|
33 |
+
if a > b:
|
34 |
+
width = a
|
35 |
+
height = a
|
36 |
+
else:
|
37 |
+
width = b
|
38 |
+
height = b
|
39 |
+
|
40 |
+
return width, height
|
41 |
+
|
42 |
+
|
43 |
+
def annotator(
|
44 |
+
img,
|
45 |
+
annotators,
|
46 |
+
colorbb,
|
47 |
+
colormask,
|
48 |
+
colorellipse,
|
49 |
+
colorbc,
|
50 |
+
colorcir,
|
51 |
+
colorlabel,
|
52 |
+
colorhalo,
|
53 |
+
colortri
|
54 |
+
):
|
55 |
"""
|
56 |
Function that changes the color of annotators
|
57 |
Args:
|
|
|
62 |
annotators: annotated image
|
63 |
"""
|
64 |
|
65 |
+
img = img[..., ::-1].copy() # BGR to RGB using numpy
|
|
|
|
|
|
|
66 |
|
67 |
detections, labels = load_model(img)
|
68 |
|
|
|
69 |
if "Blur" in annotators:
|
70 |
# Apply Blur
|
71 |
blur_annotator = sv.BlurAnnotator()
|
|
|
91 |
corner_annotator = sv.BoxCornerAnnotator(sv.Color.from_hex(str(colorbc)))
|
92 |
img = corner_annotator.annotate(img, detections=detections)
|
93 |
|
94 |
+
if "Circle" in annotators:
|
|
|
95 |
# Draw circle
|
96 |
circle_annotator = sv.CircleAnnotator(sv.Color.from_hex(str(colorcir)))
|
97 |
img = circle_annotator.annotate(img, detections=detections)
|
|
|
102 |
label_annotator = sv.LabelAnnotator(sv.Color.from_hex(str(colorlabel)))
|
103 |
img = label_annotator.annotate(img, detections=detections, labels=labels)
|
104 |
|
105 |
+
if "Pixelate" in annotators:
|
106 |
+
# Draw PixelateAnnotator
|
107 |
+
pixelate_annotator = sv.PixelateAnnotator()
|
108 |
+
img = pixelate_annotator.annotate(img, detections=detections)
|
109 |
|
110 |
+
if "Halo" in annotators:
|
111 |
+
# Draw HaloAnnotator
|
112 |
+
halo_annotator = sv.HaloAnnotator(sv.Color.from_hex(str(colorhalo)))
|
113 |
+
img = halo_annotator.annotate(img, detections=detections)
|
114 |
|
115 |
+
if "HeatMap" in annotators:
|
116 |
+
# Draw HeatMapAnnotator
|
117 |
+
heatmap_annotator = sv.HeatMapAnnotator()
|
118 |
+
img = heatmap_annotator.annotate(img, detections=detections)
|
119 |
+
|
120 |
+
if "Dot" in annotators:
|
121 |
+
# Draw DotAnnotator
|
122 |
+
dot_annotator = sv.DotAnnotator()
|
123 |
+
img = dot_annotator.annotate(img, detections=detections)
|
124 |
+
|
125 |
+
if "Triangle" in annotators:
|
126 |
+
# Draw TriangleAnnotator
|
127 |
+
tri_annotator = sv.TriangleAnnotator(sv.Color.from_hex(str(colortri)))
|
128 |
+
img = tri_annotator.annotate(img, detections=detections)
|
129 |
|
130 |
+
# crop image for the largest possible square
|
131 |
+
res_img = Image.fromarray(img)
|
132 |
+
# print(type(res_img))
|
133 |
+
x = 0
|
134 |
+
y = 0
|
135 |
|
136 |
+
# print("size of the pil im=", res_img.size)
|
137 |
+
(v1, v2) = res_img.size
|
138 |
width, height = calculate_crop_dim(v1, v2)
|
139 |
+
# print(width, height)
|
140 |
my_img = np.array(res_img)
|
141 |
|
142 |
+
crop_img = my_img[y : y + height, x : x + width]
|
143 |
+
# print(type(crop_img))
|
144 |
|
145 |
+
return crop_img[..., ::-1].copy() # BGR to RGB using numpy
|
146 |
|
147 |
|
148 |
+
purple_theme = theme = gr.themes.Soft(primary_hue=gr.themes.colors.purple).set(
|
149 |
+
button_primary_background_fill="*primary_600",
|
150 |
+
button_primary_background_fill_hover="*primary_700",
|
151 |
+
checkbox_label_background_fill_selected="*primary_600",
|
152 |
+
checkbox_background_color_selected="*primary_400",
|
153 |
+
)
|
154 |
+
|
155 |
+
with gr.Blocks(theme=purple_theme) as app:
|
156 |
gr.Markdown("""# Supervision Annotators""")
|
157 |
+
annotators = gr.CheckboxGroup(
|
158 |
+
choices=[
|
159 |
+
"BoundingBox",
|
160 |
+
"Mask",
|
161 |
+
"Halo",
|
162 |
+
"Ellipse",
|
163 |
+
"BoxCorner",
|
164 |
+
"Circle",
|
165 |
+
"Label",
|
166 |
+
"Blur",
|
167 |
+
"Pixelate",
|
168 |
+
"HeatMap",
|
169 |
+
"Dot",
|
170 |
+
"Triangle"
|
171 |
+
],
|
172 |
+
value=["BoundingBox", "Mask"],
|
173 |
+
label="Select Annotators:",
|
174 |
+
)
|
175 |
|
176 |
+
gr.Markdown("🎨 **Color Picker**")
|
177 |
+
with gr.Row(variant="compact"):
|
178 |
with gr.Column():
|
179 |
+
colorbb = gr.ColorPicker(value="#A351FB", label="BoundingBox")
|
180 |
with gr.Column():
|
181 |
+
colormask = gr.ColorPicker(value="#A351FB", label="Mask")
|
182 |
with gr.Column():
|
183 |
+
colorellipse = gr.ColorPicker(value="#A351FB", label="Ellipse")
|
184 |
with gr.Column():
|
185 |
+
colorbc = gr.ColorPicker(value="#A351FB", label="BoxCorner")
|
186 |
with gr.Column():
|
187 |
+
colorcir = gr.ColorPicker(value="#A351FB", label="Circle")
|
188 |
with gr.Column():
|
189 |
+
colorlabel = gr.ColorPicker(value="#A351FB", label="Label")
|
190 |
+
with gr.Column():
|
191 |
+
colorhalo = gr.ColorPicker(value="#A351FB", label="Halo")
|
192 |
+
with gr.Column():
|
193 |
+
colordot = gr.ColorPicker(value="#A351FB", label="Dot")
|
194 |
+
with gr.Column():
|
195 |
+
colortri = gr.ColorPicker(value="#A351FB", label="Triangle")
|
196 |
+
|
197 |
with gr.Row():
|
198 |
+
with gr.Column():
|
199 |
+
with gr.Tab("Input image"):
|
200 |
+
image_input = gr.Image(type="numpy", show_label=False)
|
201 |
+
with gr.Column():
|
202 |
+
with gr.Tab("Result image"):
|
203 |
+
image_output = gr.Image(type="numpy", show_label=False)
|
204 |
image_button = gr.Button(value="Annotate it!", variant="primary")
|
205 |
|
206 |
+
image_button.click(
|
207 |
+
annotator,
|
208 |
+
inputs=[
|
209 |
+
image_input,
|
210 |
+
annotators,
|
211 |
+
colorbb,
|
212 |
+
colormask,
|
213 |
+
colorellipse,
|
214 |
+
colorbc,
|
215 |
+
colorcir,
|
216 |
+
colorlabel,
|
217 |
+
colorhalo,
|
218 |
+
colortri,
|
219 |
+
],
|
220 |
+
outputs=image_output,
|
221 |
+
)
|
222 |
|
223 |
gr.Markdown("## Image Examples")
|
224 |
gr.Examples(
|
225 |
+
examples=[
|
226 |
+
os.path.join(os.path.abspath(""), "city.jpg"),
|
227 |
+
os.path.join(os.path.abspath(""), "household.jpg"),
|
228 |
+
os.path.join(os.path.abspath(""), "industry.jpg"),
|
229 |
+
os.path.join(os.path.abspath(""), "retail.jpg"),
|
230 |
+
os.path.join(os.path.abspath(""), "aerodefence.jpg"),
|
231 |
+
],
|
232 |
inputs=image_input,
|
233 |
outputs=image_output,
|
234 |
fn=annotator,
|
|
|
236 |
)
|
237 |
|
238 |
|
239 |
+
if __name__ == "__main__":
|
240 |
+
print("Starting app...")
|
241 |
+
print("Dark theme is available at: http://localhost:7860/?__theme=dark")
|
242 |
+
app.launch(debug=False)
|