onuralpszr commited on
Commit
7183f64
·
verified ·
1 Parent(s): 8acdc9b

feat: ✨ new annotators added from supervision

Browse files

Signed-off-by: Onuralp SEZER <[email protected]>

Files changed (2) hide show
  1. .gitignore +9 -0
  2. app.py +158 -76
.gitignore CHANGED
@@ -158,3 +158,12 @@ cython_debug/
158
  # and can be added to the global gitignore or merged into this file. For a more nuclear
159
  # option (not recommended) you can uncomment the following to ignore the entire idea folder.
160
  #.idea/
 
 
 
 
 
 
 
 
 
 
158
  # and can be added to the global gitignore or merged into this file. For a more nuclear
159
  # option (not recommended) you can uncomment the following to ignore the entire idea folder.
160
  #.idea/
161
+
162
+ # Mac
163
+ .DS_Store
164
+ .AppleDouble
165
+ .LSOverride
166
+
167
+ # YoloV8 files
168
+ yolov8s-seg.pt
169
+ yolov8s.pt
app.py CHANGED
@@ -1,35 +1,57 @@
 
 
1
  import gradio as gr
 
2
  import supervision as sv
 
 
3
  from ultralytics import YOLO
4
- import os #added for cache_examples
5
- from PIL import Image, ImageColor
6
- import numpy as np
7
 
8
- def load_model(img):
9
- # Load model, get results and return detections/labels
10
- model = YOLO('yolov8s-seg.pt')
11
- result = model(img, verbose=False, imgsz=1280)[0]
12
- detections = sv.Detections.from_ultralytics(result)
13
- labels = [
14
- f"{model.model.names[class_id]} {confidence:.2f}"
15
- for class_id, confidence in zip(detections.class_id, detections.confidence)
16
- ]
17
-
18
- return detections, labels
19
-
20
- def calculate_crop_dim(a,b):
21
- #Calculates the crop dimensions of the image resultant
22
- if a>b:
23
- width= a
24
- height = a
25
- else:
26
- width = b
27
- height = b
28
-
29
- return width, height
30
-
31
- def annotator(img,annotators,colorbb,colormask,colorellipse,colorbc,colorcir,colorlabel):
32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  """
34
  Function that changes the color of annotators
35
  Args:
@@ -40,14 +62,10 @@ def annotator(img,annotators,colorbb,colormask,colorellipse,colorbc,colorcir,col
40
  annotators: annotated image
41
  """
42
 
43
-
44
-
45
- img = img[...,::-1].copy() # BGR to RGB using numpy
46
-
47
 
48
  detections, labels = load_model(img)
49
 
50
-
51
  if "Blur" in annotators:
52
  # Apply Blur
53
  blur_annotator = sv.BlurAnnotator()
@@ -73,8 +91,7 @@ def annotator(img,annotators,colorbb,colormask,colorellipse,colorbc,colorcir,col
73
  corner_annotator = sv.BoxCornerAnnotator(sv.Color.from_hex(str(colorbc)))
74
  img = corner_annotator.annotate(img, detections=detections)
75
 
76
-
77
- if "Circle" in annotators:
78
  # Draw circle
79
  circle_annotator = sv.CircleAnnotator(sv.Color.from_hex(str(colorcir)))
80
  img = circle_annotator.annotate(img, detections=detections)
@@ -85,71 +102,133 @@ def annotator(img,annotators,colorbb,colormask,colorellipse,colorbc,colorcir,col
85
  label_annotator = sv.LabelAnnotator(sv.Color.from_hex(str(colorlabel)))
86
  img = label_annotator.annotate(img, detections=detections, labels=labels)
87
 
 
 
 
 
88
 
 
 
 
 
89
 
90
- #crop image for the largest possible square
91
- res_img = Image.fromarray(img)
92
- print(type(res_img))
93
-
94
- x=0
95
- y=0
 
 
 
 
 
 
 
 
96
 
 
 
 
 
 
97
 
98
- print("size of the pil im=", res_img.size)
99
- (v1,v2) = res_img.size
100
  width, height = calculate_crop_dim(v1, v2)
101
- print(width, height)
102
  my_img = np.array(res_img)
103
 
104
- crop_img = my_img[y:y+height, x:x+width]
105
- print(type(crop_img))
106
 
107
- return crop_img[...,::-1].copy() # BGR to RGB using numpy
108
 
109
 
110
- with gr.Blocks(theme=gr.themes.Soft(primary_hue=gr.themes.colors.purple)
111
- .set(
112
- button_primary_background_fill="*primary_600",
113
- button_primary_background_fill_hover="*primary_700",
114
- checkbox_label_background_fill_selected="*primary_600",
115
- checkbox_background_color_selected="*primary_400",
116
- )) as demo:
 
117
  gr.Markdown("""# Supervision Annotators""")
118
- annotators = gr.CheckboxGroup(choices=["BoundingBox", "Mask", "Ellipse", "BoxCorner", "Circle", "Label", "Blur"], value=["BoundingBox", "Mask"], label="Select Annotators:")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
119
 
120
- with gr.Accordion("**Color Picker**"):
121
- with gr.Row():
122
  with gr.Column():
123
- colorbb = gr.ColorPicker(value="#A351FB",label="BoundingBox")
124
  with gr.Column():
125
- colormask = gr.ColorPicker(value="#A351FB",label="Mask")
126
  with gr.Column():
127
- colorellipse = gr.ColorPicker(value="#A351FB",label="Ellipse")
128
  with gr.Column():
129
- colorbc = gr.ColorPicker(value="#A351FB",label="BoxCorner")
130
  with gr.Column():
131
- colorcir = gr.ColorPicker(value="#A351FB",label="Circle")
132
  with gr.Column():
133
- colorlabel = gr.ColorPicker(value="#A351FB",label="Label")
134
-
 
 
 
 
 
 
135
  with gr.Row():
136
- with gr.Column():
137
- with gr.Tab("Input image"):
138
- image_input = gr.Image(type="numpy", show_label=False)
139
- with gr.Column():
140
- with gr.Tab("Result image"):
141
- image_output = gr.Image(type="numpy", show_label=False)
142
  image_button = gr.Button(value="Annotate it!", variant="primary")
143
 
144
- image_button.click(annotator, inputs=[image_input,annotators,colorbb,colormask,colorellipse,colorbc,colorcir,colorlabel], outputs=image_output)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
145
 
146
  gr.Markdown("## Image Examples")
147
  gr.Examples(
148
- examples=[os.path.join(os.path.abspath(''), "city.jpg"),
149
- os.path.join(os.path.abspath(''), "household.jpg"),
150
- os.path.join(os.path.abspath(''), "industry.jpg"),
151
- os.path.join(os.path.abspath(''), "retail.jpg"),
152
- os.path.join(os.path.abspath(''), "aerodefence.jpg")],
 
 
153
  inputs=image_input,
154
  outputs=image_output,
155
  fn=annotator,
@@ -157,4 +236,7 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue=gr.themes.colors.purple)
157
  )
158
 
159
 
160
- demo.launch(debug=False)
 
 
 
 
1
+ import os # added for cache_examples
2
+
3
  import gradio as gr
4
+ import numpy as np
5
  import supervision as sv
6
+ from PIL import Image
7
+ from torch import cuda, device
8
  from ultralytics import YOLO
 
 
 
9
 
10
+ # Use GPU if available
11
+ if cuda.is_available():
12
+ device = device("cuda")
13
+ else:
14
+ device = device("cpu")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
+
17
+ def load_model(img):
18
+ # Load model, get results and return detections/labels
19
+ model = YOLO("yolov8s-seg.pt")
20
+ result = model(img, verbose=False, imgsz=1280)[0]
21
+ detections = sv.Detections.from_ultralytics(result)
22
+ labels = [
23
+ f"{model.model.names[class_id]} {confidence:.2f}"
24
+ for class_id, confidence in zip(detections.class_id, detections.confidence)
25
+ ]
26
+
27
+ print(labels)
28
+ return detections, labels
29
+
30
+
31
+ def calculate_crop_dim(a, b):
32
+ # Calculates the crop dimensions of the image resultant
33
+ if a > b:
34
+ width = a
35
+ height = a
36
+ else:
37
+ width = b
38
+ height = b
39
+
40
+ return width, height
41
+
42
+
43
+ def annotator(
44
+ img,
45
+ annotators,
46
+ colorbb,
47
+ colormask,
48
+ colorellipse,
49
+ colorbc,
50
+ colorcir,
51
+ colorlabel,
52
+ colorhalo,
53
+ colortri
54
+ ):
55
  """
56
  Function that changes the color of annotators
57
  Args:
 
62
  annotators: annotated image
63
  """
64
 
65
+ img = img[..., ::-1].copy() # BGR to RGB using numpy
 
 
 
66
 
67
  detections, labels = load_model(img)
68
 
 
69
  if "Blur" in annotators:
70
  # Apply Blur
71
  blur_annotator = sv.BlurAnnotator()
 
91
  corner_annotator = sv.BoxCornerAnnotator(sv.Color.from_hex(str(colorbc)))
92
  img = corner_annotator.annotate(img, detections=detections)
93
 
94
+ if "Circle" in annotators:
 
95
  # Draw circle
96
  circle_annotator = sv.CircleAnnotator(sv.Color.from_hex(str(colorcir)))
97
  img = circle_annotator.annotate(img, detections=detections)
 
102
  label_annotator = sv.LabelAnnotator(sv.Color.from_hex(str(colorlabel)))
103
  img = label_annotator.annotate(img, detections=detections, labels=labels)
104
 
105
+ if "Pixelate" in annotators:
106
+ # Draw PixelateAnnotator
107
+ pixelate_annotator = sv.PixelateAnnotator()
108
+ img = pixelate_annotator.annotate(img, detections=detections)
109
 
110
+ if "Halo" in annotators:
111
+ # Draw HaloAnnotator
112
+ halo_annotator = sv.HaloAnnotator(sv.Color.from_hex(str(colorhalo)))
113
+ img = halo_annotator.annotate(img, detections=detections)
114
 
115
+ if "HeatMap" in annotators:
116
+ # Draw HeatMapAnnotator
117
+ heatmap_annotator = sv.HeatMapAnnotator()
118
+ img = heatmap_annotator.annotate(img, detections=detections)
119
+
120
+ if "Dot" in annotators:
121
+ # Draw DotAnnotator
122
+ dot_annotator = sv.DotAnnotator()
123
+ img = dot_annotator.annotate(img, detections=detections)
124
+
125
+ if "Triangle" in annotators:
126
+ # Draw TriangleAnnotator
127
+ tri_annotator = sv.TriangleAnnotator(sv.Color.from_hex(str(colortri)))
128
+ img = tri_annotator.annotate(img, detections=detections)
129
 
130
+ # crop image for the largest possible square
131
+ res_img = Image.fromarray(img)
132
+ # print(type(res_img))
133
+ x = 0
134
+ y = 0
135
 
136
+ # print("size of the pil im=", res_img.size)
137
+ (v1, v2) = res_img.size
138
  width, height = calculate_crop_dim(v1, v2)
139
+ # print(width, height)
140
  my_img = np.array(res_img)
141
 
142
+ crop_img = my_img[y : y + height, x : x + width]
143
+ # print(type(crop_img))
144
 
145
+ return crop_img[..., ::-1].copy() # BGR to RGB using numpy
146
 
147
 
148
+ purple_theme = theme = gr.themes.Soft(primary_hue=gr.themes.colors.purple).set(
149
+ button_primary_background_fill="*primary_600",
150
+ button_primary_background_fill_hover="*primary_700",
151
+ checkbox_label_background_fill_selected="*primary_600",
152
+ checkbox_background_color_selected="*primary_400",
153
+ )
154
+
155
+ with gr.Blocks(theme=purple_theme) as app:
156
  gr.Markdown("""# Supervision Annotators""")
157
+ annotators = gr.CheckboxGroup(
158
+ choices=[
159
+ "BoundingBox",
160
+ "Mask",
161
+ "Halo",
162
+ "Ellipse",
163
+ "BoxCorner",
164
+ "Circle",
165
+ "Label",
166
+ "Blur",
167
+ "Pixelate",
168
+ "HeatMap",
169
+ "Dot",
170
+ "Triangle"
171
+ ],
172
+ value=["BoundingBox", "Mask"],
173
+ label="Select Annotators:",
174
+ )
175
 
176
+ gr.Markdown("🎨 **Color Picker**")
177
+ with gr.Row(variant="compact"):
178
  with gr.Column():
179
+ colorbb = gr.ColorPicker(value="#A351FB", label="BoundingBox")
180
  with gr.Column():
181
+ colormask = gr.ColorPicker(value="#A351FB", label="Mask")
182
  with gr.Column():
183
+ colorellipse = gr.ColorPicker(value="#A351FB", label="Ellipse")
184
  with gr.Column():
185
+ colorbc = gr.ColorPicker(value="#A351FB", label="BoxCorner")
186
  with gr.Column():
187
+ colorcir = gr.ColorPicker(value="#A351FB", label="Circle")
188
  with gr.Column():
189
+ colorlabel = gr.ColorPicker(value="#A351FB", label="Label")
190
+ with gr.Column():
191
+ colorhalo = gr.ColorPicker(value="#A351FB", label="Halo")
192
+ with gr.Column():
193
+ colordot = gr.ColorPicker(value="#A351FB", label="Dot")
194
+ with gr.Column():
195
+ colortri = gr.ColorPicker(value="#A351FB", label="Triangle")
196
+
197
  with gr.Row():
198
+ with gr.Column():
199
+ with gr.Tab("Input image"):
200
+ image_input = gr.Image(type="numpy", show_label=False)
201
+ with gr.Column():
202
+ with gr.Tab("Result image"):
203
+ image_output = gr.Image(type="numpy", show_label=False)
204
  image_button = gr.Button(value="Annotate it!", variant="primary")
205
 
206
+ image_button.click(
207
+ annotator,
208
+ inputs=[
209
+ image_input,
210
+ annotators,
211
+ colorbb,
212
+ colormask,
213
+ colorellipse,
214
+ colorbc,
215
+ colorcir,
216
+ colorlabel,
217
+ colorhalo,
218
+ colortri,
219
+ ],
220
+ outputs=image_output,
221
+ )
222
 
223
  gr.Markdown("## Image Examples")
224
  gr.Examples(
225
+ examples=[
226
+ os.path.join(os.path.abspath(""), "city.jpg"),
227
+ os.path.join(os.path.abspath(""), "household.jpg"),
228
+ os.path.join(os.path.abspath(""), "industry.jpg"),
229
+ os.path.join(os.path.abspath(""), "retail.jpg"),
230
+ os.path.join(os.path.abspath(""), "aerodefence.jpg"),
231
+ ],
232
  inputs=image_input,
233
  outputs=image_output,
234
  fn=annotator,
 
236
  )
237
 
238
 
239
+ if __name__ == "__main__":
240
+ print("Starting app...")
241
+ print("Dark theme is available at: http://localhost:7860/?__theme=dark")
242
+ app.launch(debug=False)