File size: 1,293 Bytes
03b9405
f6e3ce8
03b9405
 
 
f6e3ce8
03b9405
f6e3ce8
03b9405
f6e3ce8
03b9405
 
f6e3ce8
03b9405
 
 
 
 
 
 
 
 
f6e3ce8
03b9405
 
f6e3ce8
 
03b9405
 
f6e3ce8
 
03b9405
 
 
f6e3ce8
03b9405
 
f6e3ce8
 
03b9405
f6e3ce8
03b9405
 
f6e3ce8
03b9405
f6e3ce8
03b9405
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import torch

import gradio as gr
import numpy as np
import supervision as sv

from segment_anything import sam_model_registry, SamAutomaticMaskGenerator

DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

SAM_CHECKPOINT = "weights/sam_vit_h_4b8939.pth"
SAM_MODEL_TYPE = "vit_h"

MARKDOWN = """
<h1 style='text-align: center'>
    <img 
        src='https://som-gpt4v.github.io/website/img/som_logo.png' 
        style='height:50px; display:inline-block'
    />  
    Set-of-Mark (SoM) Prompting Unleashes Extraordinary Visual Grounding in GPT-4V
</h1>
"""

sam = sam_model_registry[SAM_MODEL_TYPE](checkpoint=SAM_CHECKPOINT).to(device=DEVICE)
mask_generator = SamAutomaticMaskGenerator(sam)


def inference(image: np.ndarray) -> np.ndarray:
    return image


image_input = gr.Image(label="Input", type="numpy")
image_output = gr.Image(label="SoM Visual Prompt", type="numpy", height=512)
run_button = gr.Button("Run")

with gr.Blocks() as demo:
    gr.Markdown(MARKDOWN)
    with gr.Row():
        with gr.Column():
            image_input.render()
        with gr.Column():
            image_output.render()
            run_button.render()

    run_button.click(inference, inputs=[image_input], outputs=image_output)

demo.queue().launch(debug=False, show_error=True)