Spaces:
Runtime error
Runtime error
app.py
Browse files
app.py
ADDED
@@ -0,0 +1,1114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
################################################################################
|
2 |
+
# Copyright (C) 2023 Xingqian Xu - All Rights Reserved #
|
3 |
+
# #
|
4 |
+
# Please visit Versatile Diffusion's arXiv paper for more details, link at #
|
5 |
+
# arxiv.org/abs/2211.08332 #
|
6 |
+
# #
|
7 |
+
# Besides, this work is also inspired by many established techniques including:#
|
8 |
+
# Denoising Diffusion Probablistic Model; Denoising Diffusion Implicit Model; #
|
9 |
+
# Latent Diffusion Model; Stable Diffusion; Stable Diffusion - Img2Img; Stable #
|
10 |
+
# Diffusion - Variation; ImageMixer; DreamBooth; Stable Diffusion - Lora; More #
|
11 |
+
# Control for Free; Prompt-to-Prompt; #
|
12 |
+
# #
|
13 |
+
################################################################################
|
14 |
+
|
15 |
+
import gradio as gr
|
16 |
+
import os
|
17 |
+
import PIL
|
18 |
+
from PIL import Image
|
19 |
+
from pathlib import Path
|
20 |
+
import numpy as np
|
21 |
+
import numpy.random as npr
|
22 |
+
from contextlib import nullcontext
|
23 |
+
import types
|
24 |
+
|
25 |
+
import torch
|
26 |
+
import torchvision.transforms as tvtrans
|
27 |
+
from lib.cfg_helper import model_cfg_bank
|
28 |
+
from lib.model_zoo import get_model
|
29 |
+
from cusomized_gradio_blocks import create_myexamples, customized_as_example, customized_postprocess
|
30 |
+
|
31 |
+
n_sample_image = 2
|
32 |
+
n_sample_text = 4
|
33 |
+
cache_examples = True
|
34 |
+
|
35 |
+
from lib.model_zoo.ddim import DDIMSampler
|
36 |
+
|
37 |
+
##########
|
38 |
+
# helper #
|
39 |
+
##########
|
40 |
+
|
41 |
+
def highlight_print(info):
|
42 |
+
print('')
|
43 |
+
print(''.join(['#']*(len(info)+4)))
|
44 |
+
print('# '+info+' #')
|
45 |
+
print(''.join(['#']*(len(info)+4)))
|
46 |
+
print('')
|
47 |
+
|
48 |
+
def decompose(x, q=20, niter=100):
|
49 |
+
x_mean = x.mean(-1, keepdim=True)
|
50 |
+
x_input = x - x_mean
|
51 |
+
u, s, v = torch.pca_lowrank(x_input, q=q, center=False, niter=niter)
|
52 |
+
ss = torch.stack([torch.diag(si) for si in s])
|
53 |
+
x_lowrank = torch.bmm(torch.bmm(u, ss), torch.permute(v, [0, 2, 1]))
|
54 |
+
x_remain = x_input - x_lowrank
|
55 |
+
return u, s, v, x_mean, x_remain
|
56 |
+
|
57 |
+
class adjust_rank(object):
|
58 |
+
def __init__(self, max_drop_rank=[1, 5], q=20):
|
59 |
+
self.max_semantic_drop_rank = max_drop_rank[0]
|
60 |
+
self.max_style_drop_rank = max_drop_rank[1]
|
61 |
+
self.q = q
|
62 |
+
|
63 |
+
def t2y0_semf_wrapper(t0, y00, t1, y01):
|
64 |
+
return lambda t: (np.exp((t-0.5)*2)-t0)/(t1-t0)*(y01-y00)+y00
|
65 |
+
t0, y00 = np.exp((0 -0.5)*2), -self.max_semantic_drop_rank
|
66 |
+
t1, y01 = np.exp((0.5-0.5)*2), 1
|
67 |
+
self.t2y0_semf = t2y0_semf_wrapper(t0, y00, t1, y01)
|
68 |
+
|
69 |
+
def x2y_semf_wrapper(x0, x1, y1):
|
70 |
+
return lambda x, y0: (x-x0)/(x1-x0)*(y1-y0)+y0
|
71 |
+
x0 = 0
|
72 |
+
x1, y1 = self.max_semantic_drop_rank+1, 1
|
73 |
+
self.x2y_semf = x2y_semf_wrapper(x0, x1, y1)
|
74 |
+
|
75 |
+
def t2y0_styf_wrapper(t0, y00, t1, y01):
|
76 |
+
return lambda t: (np.exp((t-0.5)*2)-t0)/(t1-t0)*(y01-y00)+y00
|
77 |
+
t0, y00 = np.exp((1 -0.5)*2), -(q-self.max_style_drop_rank)
|
78 |
+
t1, y01 = np.exp((0.5-0.5)*2), 1
|
79 |
+
self.t2y0_styf = t2y0_styf_wrapper(t0, y00, t1, y01)
|
80 |
+
|
81 |
+
def x2y_styf_wrapper(x0, x1, y1):
|
82 |
+
return lambda x, y0: (x-x0)/(x1-x0)*(y1-y0)+y0
|
83 |
+
x0 = q-1
|
84 |
+
x1, y1 = self.max_style_drop_rank-1, 1
|
85 |
+
self.x2y_styf = x2y_styf_wrapper(x0, x1, y1)
|
86 |
+
|
87 |
+
def __call__(self, x, lvl):
|
88 |
+
if lvl == 0.5:
|
89 |
+
return x
|
90 |
+
|
91 |
+
if x.dtype == torch.float16:
|
92 |
+
fp16 = True
|
93 |
+
x = x.float()
|
94 |
+
else:
|
95 |
+
fp16 = False
|
96 |
+
std_save = x.std(axis=[-2, -1])
|
97 |
+
|
98 |
+
u, s, v, x_mean, x_remain = decompose(x, q=self.q)
|
99 |
+
|
100 |
+
if lvl < 0.5:
|
101 |
+
assert lvl>=0
|
102 |
+
for xi in range(0, self.max_semantic_drop_rank+1):
|
103 |
+
y0 = self.t2y0_semf(lvl)
|
104 |
+
yi = self.x2y_semf(xi, y0)
|
105 |
+
yi = 0 if yi<0 else yi
|
106 |
+
s[:, xi] *= yi
|
107 |
+
|
108 |
+
elif lvl > 0.5:
|
109 |
+
assert lvl <= 1
|
110 |
+
for xi in range(self.max_style_drop_rank, self.q):
|
111 |
+
y0 = self.t2y0_styf(lvl)
|
112 |
+
yi = self.x2y_styf(xi, y0)
|
113 |
+
yi = 0 if yi<0 else yi
|
114 |
+
s[:, xi] *= yi
|
115 |
+
x_remain = 0
|
116 |
+
|
117 |
+
ss = torch.stack([torch.diag(si) for si in s])
|
118 |
+
x_lowrank = torch.bmm(torch.bmm(u, ss), torch.permute(v, [0, 2, 1]))
|
119 |
+
x_new = x_lowrank + x_mean + x_remain
|
120 |
+
|
121 |
+
std_new = x_new.std(axis=[-2, -1])
|
122 |
+
x_new = x_new / std_new * std_save
|
123 |
+
|
124 |
+
if fp16:
|
125 |
+
x_new = x_new.half()
|
126 |
+
|
127 |
+
return x_new
|
128 |
+
|
129 |
+
def remove_duplicate_word(tx):
|
130 |
+
def combine_words(input, length):
|
131 |
+
combined_inputs = []
|
132 |
+
if len(splitted_input)>1:
|
133 |
+
for i in range(len(input)-1):
|
134 |
+
combined_inputs.append(input[i]+" "+last_word_of(splitted_input[i+1],length)) #add the last word of the right-neighbour (overlapping) sequence (before it has expanded), which is the next word in the original sentence
|
135 |
+
return combined_inputs, length+1
|
136 |
+
|
137 |
+
def remove_duplicates(input, length):
|
138 |
+
bool_broke=False #this means we didn't find any duplicates here
|
139 |
+
for i in range(len(input) - length):
|
140 |
+
if input[i]==input[i + length]: #found a duplicate piece of sentence!
|
141 |
+
for j in range(0, length): #remove the overlapping sequences in reverse order
|
142 |
+
del input[i + length - j]
|
143 |
+
bool_broke = True
|
144 |
+
break #break the for loop as the loop length does not matches the length of splitted_input anymore as we removed elements
|
145 |
+
if bool_broke:
|
146 |
+
return remove_duplicates(input, length) #if we found a duplicate, look for another duplicate of the same length
|
147 |
+
return input
|
148 |
+
|
149 |
+
def last_word_of(input, length):
|
150 |
+
splitted = input.split(" ")
|
151 |
+
if len(splitted)==0:
|
152 |
+
return input
|
153 |
+
else:
|
154 |
+
return splitted[length-1]
|
155 |
+
|
156 |
+
def split_and_puncsplit(text):
|
157 |
+
tx = text.split(" ")
|
158 |
+
txnew = []
|
159 |
+
for txi in tx:
|
160 |
+
txqueue=[]
|
161 |
+
while True:
|
162 |
+
if txi[0] in '([{':
|
163 |
+
txqueue.extend([txi[:1], '<puncnext>'])
|
164 |
+
txi = txi[1:]
|
165 |
+
if len(txi) == 0:
|
166 |
+
break
|
167 |
+
else:
|
168 |
+
break
|
169 |
+
txnew += txqueue
|
170 |
+
txstack=[]
|
171 |
+
if len(txi) == 0:
|
172 |
+
continue
|
173 |
+
while True:
|
174 |
+
if txi[-1] in '?!.,:;}])':
|
175 |
+
txstack = ['<puncnext>', txi[-1:]] + txstack
|
176 |
+
txi = txi[:-1]
|
177 |
+
if len(txi) == 0:
|
178 |
+
break
|
179 |
+
else:
|
180 |
+
break
|
181 |
+
if len(txi) != 0:
|
182 |
+
txnew += [txi]
|
183 |
+
txnew += txstack
|
184 |
+
return txnew
|
185 |
+
|
186 |
+
if tx == '':
|
187 |
+
return tx
|
188 |
+
|
189 |
+
splitted_input = split_and_puncsplit(tx)
|
190 |
+
word_length = 1
|
191 |
+
intermediate_output = False
|
192 |
+
while len(splitted_input)>1:
|
193 |
+
splitted_input = remove_duplicates(splitted_input, word_length)
|
194 |
+
if len(splitted_input)>1:
|
195 |
+
splitted_input, word_length = combine_words(splitted_input, word_length)
|
196 |
+
if intermediate_output:
|
197 |
+
print(splitted_input)
|
198 |
+
print(word_length)
|
199 |
+
output = splitted_input[0]
|
200 |
+
output = output.replace(' <puncnext> ', '')
|
201 |
+
return output
|
202 |
+
|
203 |
+
def get_instruction(mode):
|
204 |
+
t2i_instruction = ["Generate image from text prompt."]
|
205 |
+
i2i_instruction = ["Generate image conditioned on reference image.",]
|
206 |
+
i2t_instruction = ["Generate text from reference image. "]
|
207 |
+
t2t_instruction = ["Generate text from reference text prompt. "]
|
208 |
+
dcg_instruction = ["Generate image conditioned on both text and image."]
|
209 |
+
tcg_instruction = ["Generate image conditioned on text and up to two images."]
|
210 |
+
mcg_instruction = ["Generate image from multiple contexts."]
|
211 |
+
|
212 |
+
if mode == "Text-to-Image":
|
213 |
+
return '\n'.join(t2i_instruction)
|
214 |
+
elif mode == "Image-Variation":
|
215 |
+
return '\n'.join(i2i_instruction)
|
216 |
+
elif mode == "Image-to-Text":
|
217 |
+
return '\n'.join(i2t_instruction)
|
218 |
+
elif mode == "Text-Variation":
|
219 |
+
return '\n'.join(t2t_instruction)
|
220 |
+
elif mode == "Dual-Context":
|
221 |
+
return '\n'.join(dcg_instruction)
|
222 |
+
elif mode == "Triple-Context":
|
223 |
+
return '\n'.join(tcg_instruction)
|
224 |
+
elif mode == "Multi-Context":
|
225 |
+
return '\n'.join(mcg_instruction)
|
226 |
+
else:
|
227 |
+
assert False
|
228 |
+
|
229 |
+
########
|
230 |
+
# main #
|
231 |
+
########
|
232 |
+
class vd_dummy(object):
|
233 |
+
def __init__(self, *args, **kwarg):
|
234 |
+
self.which = 'Vdummy'
|
235 |
+
def inference_t2i(self, *args, **kwarg): pass
|
236 |
+
def inference_i2i(self, *args, **kwarg): pass
|
237 |
+
def inference_i2t(self, *args, **kwarg): pass
|
238 |
+
def inference_t2t(self, *args, **kwarg): pass
|
239 |
+
def inference_dcg(self, *args, **kwarg): pass
|
240 |
+
def inference_tcg(self, *args, **kwarg): pass
|
241 |
+
def inference_mcg(self, *args, **kwarg):
|
242 |
+
return None, None
|
243 |
+
|
244 |
+
class vd_inference(object):
|
245 |
+
def __init__(self, fp16=False, which='v2.0'):
|
246 |
+
highlight_print(which)
|
247 |
+
self.which = which
|
248 |
+
|
249 |
+
if self.which == 'v1.0':
|
250 |
+
cfgm = model_cfg_bank()('vd_four_flow_v1-0')
|
251 |
+
else:
|
252 |
+
assert False, 'Model type not supported'
|
253 |
+
net = get_model()(cfgm)
|
254 |
+
|
255 |
+
if fp16:
|
256 |
+
highlight_print('Running in FP16')
|
257 |
+
if self.which == 'v1.0':
|
258 |
+
net.ctx['text'].fp16 = True
|
259 |
+
net.ctx['image'].fp16 = True
|
260 |
+
net = net.half()
|
261 |
+
self.dtype = torch.float16
|
262 |
+
else:
|
263 |
+
self.dtype = torch.float32
|
264 |
+
|
265 |
+
if self.which == 'v1.0':
|
266 |
+
# if fp16:
|
267 |
+
# sd = torch.load('pretrained/vd-four-flow-v1-0-fp16.pth', map_location='cpu')
|
268 |
+
# else:
|
269 |
+
# sd = torch.load('pretrained/vd-four-flow-v1-0.pth', map_location='cpu')
|
270 |
+
from huggingface_hub import hf_hub_download
|
271 |
+
if fp16:
|
272 |
+
temppath = hf_hub_download('shi-labs/versatile-diffusion-model', 'pretrained_pth/vd-four-flow-v1-0-fp16.pth')
|
273 |
+
else:
|
274 |
+
temppath = hf_hub_download('shi-labs/versatile-diffusion-model', 'pretrained_pth/vd-four-flow-v1-0.pth')
|
275 |
+
sd = torch.load(temppath, map_location='cpu')
|
276 |
+
|
277 |
+
net.load_state_dict(sd, strict=False)
|
278 |
+
|
279 |
+
self.use_cuda = torch.cuda.is_available()
|
280 |
+
if self.use_cuda:
|
281 |
+
net.to('cuda')
|
282 |
+
self.net = net
|
283 |
+
self.sampler = DDIMSampler(net)
|
284 |
+
|
285 |
+
self.output_dim = [512, 512]
|
286 |
+
self.n_sample_image = n_sample_image
|
287 |
+
self.n_sample_text = n_sample_text
|
288 |
+
self.ddim_steps = 50
|
289 |
+
self.ddim_eta = 0.0
|
290 |
+
self.scale_textto = 7.5
|
291 |
+
self.image_latent_dim = 4
|
292 |
+
self.text_latent_dim = 768
|
293 |
+
self.text_temperature = 1
|
294 |
+
|
295 |
+
if which == 'v1.0':
|
296 |
+
self.adjust_rank_f = adjust_rank(max_drop_rank=[1, 5], q=20)
|
297 |
+
self.scale_imgto = 7.5
|
298 |
+
self.disentanglement_noglobal = True
|
299 |
+
|
300 |
+
def inference_t2i(self, text, seed):
|
301 |
+
n_samples = self.n_sample_image
|
302 |
+
scale = self.scale_textto
|
303 |
+
sampler = self.sampler
|
304 |
+
h, w = self.output_dim
|
305 |
+
u = self.net.ctx_encode([""], which='text').repeat(n_samples, 1, 1)
|
306 |
+
c = self.net.ctx_encode([text], which='text').repeat(n_samples, 1, 1)
|
307 |
+
shape = [n_samples, self.image_latent_dim, h//8, w//8]
|
308 |
+
np.random.seed(seed)
|
309 |
+
torch.manual_seed(seed + 100)
|
310 |
+
x, _ = sampler.sample(
|
311 |
+
steps=self.ddim_steps,
|
312 |
+
x_info={'type':'image'},
|
313 |
+
c_info={'type':'text', 'conditioning':c, 'unconditional_conditioning':u,
|
314 |
+
'unconditional_guidance_scale':scale},
|
315 |
+
shape=shape,
|
316 |
+
verbose=False,
|
317 |
+
eta=self.ddim_eta)
|
318 |
+
im = self.net.vae_decode(x, which='image')
|
319 |
+
im = [tvtrans.ToPILImage()(i) for i in im]
|
320 |
+
return im
|
321 |
+
|
322 |
+
def inference_i2i(self, im, fid_lvl, fcs_lvl, clr_adj, seed):
|
323 |
+
n_samples = self.n_sample_image
|
324 |
+
scale = self.scale_imgto
|
325 |
+
sampler = self.sampler
|
326 |
+
h, w = self.output_dim
|
327 |
+
device = self.net.device
|
328 |
+
|
329 |
+
BICUBIC = PIL.Image.Resampling.BICUBIC
|
330 |
+
im = im.resize([w, h], resample=BICUBIC)
|
331 |
+
|
332 |
+
if fid_lvl == 1:
|
333 |
+
return [im]*n_samples
|
334 |
+
|
335 |
+
cx = tvtrans.ToTensor()(im)[None].to(device).to(self.dtype)
|
336 |
+
|
337 |
+
c = self.net.ctx_encode(cx, which='image')
|
338 |
+
if self.disentanglement_noglobal:
|
339 |
+
c_glb = c[:, 0:1]
|
340 |
+
c_loc = c[:, 1: ]
|
341 |
+
c_loc = self.adjust_rank_f(c_loc, fcs_lvl)
|
342 |
+
c = torch.cat([c_glb, c_loc], dim=1).repeat(n_samples, 1, 1)
|
343 |
+
else:
|
344 |
+
c = self.adjust_rank_f(c, fcs_lvl).repeat(n_samples, 1, 1)
|
345 |
+
u = torch.zeros_like(c)
|
346 |
+
|
347 |
+
shape = [n_samples, self.image_latent_dim, h//8, w//8]
|
348 |
+
np.random.seed(seed)
|
349 |
+
torch.manual_seed(seed + 100)
|
350 |
+
if fid_lvl!=0:
|
351 |
+
x0 = self.net.vae_encode(cx, which='image').repeat(n_samples, 1, 1, 1)
|
352 |
+
step = int(self.ddim_steps * (1-fid_lvl))
|
353 |
+
x, _ = sampler.sample(
|
354 |
+
steps=self.ddim_steps,
|
355 |
+
x_info={'type':'image', 'x0':x0, 'x0_forward_timesteps':step},
|
356 |
+
c_info={'type':'image', 'conditioning':c, 'unconditional_conditioning':u,
|
357 |
+
'unconditional_guidance_scale':scale},
|
358 |
+
shape=shape,
|
359 |
+
verbose=False,
|
360 |
+
eta=self.ddim_eta)
|
361 |
+
else:
|
362 |
+
x, _ = sampler.sample(
|
363 |
+
steps=self.ddim_steps,
|
364 |
+
x_info={'type':'image',},
|
365 |
+
c_info={'type':'image', 'conditioning':c, 'unconditional_conditioning':u,
|
366 |
+
'unconditional_guidance_scale':scale},
|
367 |
+
shape=shape,
|
368 |
+
verbose=False,
|
369 |
+
eta=self.ddim_eta)
|
370 |
+
|
371 |
+
imout = self.net.vae_decode(x, which='image')
|
372 |
+
|
373 |
+
if clr_adj == 'Simple':
|
374 |
+
cx_mean = cx.view(3, -1).mean(-1)[:, None, None]
|
375 |
+
cx_std = cx.view(3, -1).std(-1)[:, None, None]
|
376 |
+
imout_mean = [imouti.view(3, -1).mean(-1)[:, None, None] for imouti in imout]
|
377 |
+
imout_std = [imouti.view(3, -1).std(-1)[:, None, None] for imouti in imout]
|
378 |
+
imout = [(ii-mi)/si*cx_std+cx_mean for ii, mi, si in zip(imout, imout_mean, imout_std)]
|
379 |
+
imout = [torch.clamp(ii, 0, 1) for ii in imout]
|
380 |
+
|
381 |
+
imout = [tvtrans.ToPILImage()(i) for i in imout]
|
382 |
+
return imout
|
383 |
+
|
384 |
+
def inference_i2t(self, im, seed):
|
385 |
+
n_samples = self.n_sample_text
|
386 |
+
scale = self.scale_imgto
|
387 |
+
sampler = self.sampler
|
388 |
+
h, w = self.output_dim
|
389 |
+
device = self.net.device
|
390 |
+
|
391 |
+
BICUBIC = PIL.Image.Resampling.BICUBIC
|
392 |
+
im = im.resize([w, h], resample=BICUBIC)
|
393 |
+
|
394 |
+
cx = tvtrans.ToTensor()(im)[None].to(device)
|
395 |
+
c = self.net.ctx_encode(cx, which='image').repeat(n_samples, 1, 1)
|
396 |
+
u = self.net.ctx_encode(torch.zeros_like(cx), which='image').repeat(n_samples, 1, 1)
|
397 |
+
|
398 |
+
shape = [n_samples, self.text_latent_dim]
|
399 |
+
np.random.seed(seed)
|
400 |
+
torch.manual_seed(seed + 100)
|
401 |
+
x, _ = sampler.sample(
|
402 |
+
steps=self.ddim_steps,
|
403 |
+
x_info={'type':'text',},
|
404 |
+
c_info={'type':'image', 'conditioning':c, 'unconditional_conditioning':u,
|
405 |
+
'unconditional_guidance_scale':scale},
|
406 |
+
shape=shape,
|
407 |
+
verbose=False,
|
408 |
+
eta=self.ddim_eta)
|
409 |
+
tx = self.net.vae_decode(x, which='text', temperature=self.text_temperature)
|
410 |
+
tx = [remove_duplicate_word(txi) for txi in tx]
|
411 |
+
tx_combined = '\n'.join(tx)
|
412 |
+
return tx_combined
|
413 |
+
|
414 |
+
def inference_t2t(self, text, seed):
|
415 |
+
n_samples = self.n_sample_text
|
416 |
+
scale = self.scale_textto
|
417 |
+
sampler = self.sampler
|
418 |
+
u = self.net.ctx_encode([""], which='text').repeat(n_samples, 1, 1)
|
419 |
+
c = self.net.ctx_encode([text], which='text').repeat(n_samples, 1, 1)
|
420 |
+
shape = [n_samples, self.text_latent_dim]
|
421 |
+
np.random.seed(seed)
|
422 |
+
torch.manual_seed(seed + 100)
|
423 |
+
x, _ = sampler.sample(
|
424 |
+
steps=self.ddim_steps,
|
425 |
+
x_info={'type':'text',},
|
426 |
+
c_info={'type':'text', 'conditioning':c, 'unconditional_conditioning':u,
|
427 |
+
'unconditional_guidance_scale':scale},
|
428 |
+
shape=shape,
|
429 |
+
verbose=False,
|
430 |
+
eta=self.ddim_eta)
|
431 |
+
tx = self.net.vae_decode(x, which='text', temperature=self.text_temperature)
|
432 |
+
tx = [remove_duplicate_word(txi) for txi in tx]
|
433 |
+
tx_combined = '\n'.join(tx)
|
434 |
+
return tx_combined
|
435 |
+
|
436 |
+
def inference_dcg(self, imctx, fcs_lvl, textctx, textstrength, seed):
|
437 |
+
n_samples = self.n_sample_image
|
438 |
+
sampler = self.sampler
|
439 |
+
h, w = self.output_dim
|
440 |
+
device = self.net.device
|
441 |
+
|
442 |
+
c_info_list = []
|
443 |
+
|
444 |
+
if (textctx is not None) and (textctx != "") and (textstrength != 0):
|
445 |
+
ut = self.net.ctx_encode([""], which='text').repeat(n_samples, 1, 1)
|
446 |
+
ct = self.net.ctx_encode([textctx], which='text').repeat(n_samples, 1, 1)
|
447 |
+
scale = self.scale_imgto*(1-textstrength) + self.scale_textto*textstrength
|
448 |
+
|
449 |
+
c_info_list.append({
|
450 |
+
'type':'text',
|
451 |
+
'conditioning':ct,
|
452 |
+
'unconditional_conditioning':ut,
|
453 |
+
'unconditional_guidance_scale':scale,
|
454 |
+
'ratio': textstrength, })
|
455 |
+
else:
|
456 |
+
scale = self.scale_imgto
|
457 |
+
textstrength = 0
|
458 |
+
|
459 |
+
BICUBIC = PIL.Image.Resampling.BICUBIC
|
460 |
+
cx = imctx.resize([w, h], resample=BICUBIC)
|
461 |
+
cx = tvtrans.ToTensor()(cx)[None].to(device).to(self.dtype)
|
462 |
+
ci = self.net.ctx_encode(cx, which='image')
|
463 |
+
|
464 |
+
if self.disentanglement_noglobal:
|
465 |
+
ci_glb = ci[:, 0:1]
|
466 |
+
ci_loc = ci[:, 1: ]
|
467 |
+
ci_loc = self.adjust_rank_f(ci_loc, fcs_lvl)
|
468 |
+
ci = torch.cat([ci_glb, ci_loc], dim=1).repeat(n_samples, 1, 1)
|
469 |
+
else:
|
470 |
+
ci = self.adjust_rank_f(ci, fcs_lvl).repeat(n_samples, 1, 1)
|
471 |
+
|
472 |
+
c_info_list.append({
|
473 |
+
'type':'image',
|
474 |
+
'conditioning':ci,
|
475 |
+
'unconditional_conditioning':torch.zeros_like(ci),
|
476 |
+
'unconditional_guidance_scale':scale,
|
477 |
+
'ratio': (1-textstrength), })
|
478 |
+
|
479 |
+
shape = [n_samples, self.image_latent_dim, h//8, w//8]
|
480 |
+
np.random.seed(seed)
|
481 |
+
torch.manual_seed(seed + 100)
|
482 |
+
x, _ = sampler.sample_multicontext(
|
483 |
+
steps=self.ddim_steps,
|
484 |
+
x_info={'type':'image',},
|
485 |
+
c_info_list=c_info_list,
|
486 |
+
shape=shape,
|
487 |
+
verbose=False,
|
488 |
+
eta=self.ddim_eta)
|
489 |
+
|
490 |
+
imout = self.net.vae_decode(x, which='image')
|
491 |
+
imout = [tvtrans.ToPILImage()(i) for i in imout]
|
492 |
+
return imout
|
493 |
+
|
494 |
+
def inference_tcg(self, *args):
|
495 |
+
args_imag = list(args[0:10]) + [None, None, None, None, None]*2
|
496 |
+
args_rest = args[10:]
|
497 |
+
imin, imout = self.inference_mcg(*args_imag, *args_rest)
|
498 |
+
return imin, imout
|
499 |
+
|
500 |
+
def inference_mcg(self, *args):
|
501 |
+
imctx = [args[0:5], args[5:10], args[10:15], args[15:20]]
|
502 |
+
textctx, textstrength, seed = args[20:]
|
503 |
+
|
504 |
+
n_samples = self.n_sample_image
|
505 |
+
sampler = self.sampler
|
506 |
+
h, w = self.output_dim
|
507 |
+
device = self.net.device
|
508 |
+
|
509 |
+
c_info_list = []
|
510 |
+
|
511 |
+
if (textctx is not None) and (textctx != "") and (textstrength != 0):
|
512 |
+
ut = self.net.ctx_encode([""], which='text').repeat(n_samples, 1, 1)
|
513 |
+
ct = self.net.ctx_encode([textctx], which='text').repeat(n_samples, 1, 1)
|
514 |
+
scale = self.scale_imgto*(1-textstrength) + self.scale_textto*textstrength
|
515 |
+
|
516 |
+
c_info_list.append({
|
517 |
+
'type':'text',
|
518 |
+
'conditioning':ct,
|
519 |
+
'unconditional_conditioning':ut,
|
520 |
+
'unconditional_guidance_scale':scale,
|
521 |
+
'ratio': textstrength, })
|
522 |
+
else:
|
523 |
+
scale = self.scale_imgto
|
524 |
+
textstrength = 0
|
525 |
+
|
526 |
+
input_save = []
|
527 |
+
imc = []
|
528 |
+
for im, imm, strength, fcs_lvl, use_mask in imctx:
|
529 |
+
if (im is None) and (imm is None):
|
530 |
+
continue
|
531 |
+
BILINEAR = PIL.Image.Resampling.BILINEAR
|
532 |
+
BICUBIC = PIL.Image.Resampling.BICUBIC
|
533 |
+
if use_mask:
|
534 |
+
cx = imm['image'].resize([w, h], resample=BICUBIC)
|
535 |
+
cx = tvtrans.ToTensor()(cx)[None].to(self.dtype).to(device)
|
536 |
+
m = imm['mask'].resize([w, h], resample=BILINEAR)
|
537 |
+
m = tvtrans.ToTensor()(m)[None, 0:1].to(self.dtype).to(device)
|
538 |
+
m = (1-m)
|
539 |
+
cx_show = cx*m
|
540 |
+
ci = self.net.ctx_encode(cx, which='image', masks=m)
|
541 |
+
else:
|
542 |
+
cx = im.resize([w, h], resample=BICUBIC)
|
543 |
+
cx = tvtrans.ToTensor()(cx)[None].to(self.dtype).to(device)
|
544 |
+
ci = self.net.ctx_encode(cx, which='image')
|
545 |
+
cx_show = cx
|
546 |
+
|
547 |
+
input_save.append(tvtrans.ToPILImage()(cx_show[0]))
|
548 |
+
|
549 |
+
if self.disentanglement_noglobal:
|
550 |
+
ci_glb = ci[:, 0:1]
|
551 |
+
ci_loc = ci[:, 1: ]
|
552 |
+
ci_loc = self.adjust_rank_f(ci_loc, fcs_lvl)
|
553 |
+
ci = torch.cat([ci_glb, ci_loc], dim=1).repeat(n_samples, 1, 1)
|
554 |
+
else:
|
555 |
+
ci = self.adjust_rank_f(ci, fcs_lvl).repeat(n_samples, 1, 1)
|
556 |
+
imc.append(ci * strength)
|
557 |
+
|
558 |
+
cis = torch.cat(imc, dim=1)
|
559 |
+
c_info_list.append({
|
560 |
+
'type':'image',
|
561 |
+
'conditioning':cis,
|
562 |
+
'unconditional_conditioning':torch.zeros_like(cis),
|
563 |
+
'unconditional_guidance_scale':scale,
|
564 |
+
'ratio': (1-textstrength), })
|
565 |
+
|
566 |
+
shape = [n_samples, self.image_latent_dim, h//8, w//8]
|
567 |
+
np.random.seed(seed)
|
568 |
+
torch.manual_seed(seed + 100)
|
569 |
+
x, _ = sampler.sample_multicontext(
|
570 |
+
steps=self.ddim_steps,
|
571 |
+
x_info={'type':'image',},
|
572 |
+
c_info_list=c_info_list,
|
573 |
+
shape=shape,
|
574 |
+
verbose=False,
|
575 |
+
eta=self.ddim_eta)
|
576 |
+
|
577 |
+
imout = self.net.vae_decode(x, which='image')
|
578 |
+
imout = [tvtrans.ToPILImage()(i) for i in imout]
|
579 |
+
return input_save, imout
|
580 |
+
|
581 |
+
# vd_inference = vd_dummy()
|
582 |
+
vd_inference = vd_inference(which='v1.0', fp16=True)
|
583 |
+
|
584 |
+
#################
|
585 |
+
# sub interface #
|
586 |
+
#################
|
587 |
+
|
588 |
+
def t2i_interface(with_example=False):
|
589 |
+
gr.HTML('<p id=myinst>  Description: ' + get_instruction("Text-to-Image") + '</p>')
|
590 |
+
with gr.Row():
|
591 |
+
with gr.Column():
|
592 |
+
text = gr.Textbox(lines=4, placeholder="Input prompt...", label='Text Input')
|
593 |
+
seed = gr.Number(20, label="Seed", precision=0)
|
594 |
+
button = gr.Button("Run")
|
595 |
+
with gr.Column():
|
596 |
+
img_output = gr.Gallery(label="Image Result", elem_id='customized_imbox').style(grid=n_sample_image)
|
597 |
+
|
598 |
+
button.click(
|
599 |
+
vd_inference.inference_t2i,
|
600 |
+
inputs=[text, seed],
|
601 |
+
outputs=[img_output])
|
602 |
+
|
603 |
+
if with_example:
|
604 |
+
gr.Examples(
|
605 |
+
label='Examples',
|
606 |
+
examples=get_example('Text-to-Image'),
|
607 |
+
fn=vd_inference.inference_t2i,
|
608 |
+
inputs=[text, seed],
|
609 |
+
outputs=[img_output],
|
610 |
+
cache_examples=cache_examples),
|
611 |
+
|
612 |
+
def i2i_interface(with_example=False):
|
613 |
+
gr.HTML('<p id=myinst>  Description: ' + get_instruction("Image-Variation") + '</p>')
|
614 |
+
with gr.Row():
|
615 |
+
with gr.Column():
|
616 |
+
img_input = gr.Image(label='Image Input', type='pil', elem_id='customized_imbox')
|
617 |
+
sim_flag = gr.Checkbox(label='Show Detail Controls')
|
618 |
+
with gr.Row():
|
619 |
+
fid_lvl = gr.Slider(label="Fidelity (Dislike -- Same)", minimum=0, maximum=1, value=0, step=0.02, visible=False)
|
620 |
+
fcs_lvl = gr.Slider(label="Focus (Semantic -- Style)", minimum=0, maximum=1, value=0.5, step=0.02, visible=False)
|
621 |
+
clr_adj = gr.Radio(label="Color Adjustment", choices=["None", "Simple"], value='Simple', visible=False)
|
622 |
+
explain = gr.HTML('<p id=myinst>  Fidelity: How likely the output image looks like the referece image (0-dislike (default), 1-same).</p>'+
|
623 |
+
'<p id=myinst>  Focus: What the output image should focused on (0-semantic, 0.5-balanced (default), 1-style).</p>',
|
624 |
+
visible=False)
|
625 |
+
seed = gr.Number(20, label="Seed", precision=0)
|
626 |
+
button = gr.Button("Run")
|
627 |
+
with gr.Column():
|
628 |
+
img_output = gr.Gallery(label="Image Result", elem_id='customized_imbox').style(grid=n_sample_image)
|
629 |
+
|
630 |
+
sim_flag.change(
|
631 |
+
fn=lambda x: {
|
632 |
+
explain : gr.update(visible=x),
|
633 |
+
fid_lvl : gr.update(visible=x),
|
634 |
+
fcs_lvl : gr.update(visible=x),
|
635 |
+
clr_adj : gr.update(visible=x), },
|
636 |
+
inputs=sim_flag,
|
637 |
+
outputs=[explain, fid_lvl, fcs_lvl, clr_adj, seed],)
|
638 |
+
|
639 |
+
button.click(
|
640 |
+
vd_inference.inference_i2i,
|
641 |
+
inputs=[img_input, fid_lvl, fcs_lvl, clr_adj, seed],
|
642 |
+
outputs=[img_output])
|
643 |
+
|
644 |
+
if with_example:
|
645 |
+
gr.Examples(
|
646 |
+
label='Examples',
|
647 |
+
examples=get_example('Image-Variation'),
|
648 |
+
fn=vd_inference.inference_i2i,
|
649 |
+
inputs=[img_input, fid_lvl, fcs_lvl, clr_adj, seed],
|
650 |
+
outputs=[img_output],
|
651 |
+
cache_examples=cache_examples),
|
652 |
+
|
653 |
+
def i2t_interface(with_example=False):
|
654 |
+
gr.HTML('<p id=myinst>  Description: ' + get_instruction("Image-to-Text") + '</p>')
|
655 |
+
with gr.Row():
|
656 |
+
with gr.Column():
|
657 |
+
img_input = gr.Image(label='Image Input', type='pil', elem_id='customized_imbox')
|
658 |
+
seed = gr.Number(20, label="Seed", precision=0)
|
659 |
+
button = gr.Button("Run")
|
660 |
+
with gr.Column():
|
661 |
+
txt_output = gr.Textbox(lines=4, label='Text Result')
|
662 |
+
|
663 |
+
button.click(
|
664 |
+
vd_inference.inference_i2t,
|
665 |
+
inputs=[img_input, seed],
|
666 |
+
outputs=[txt_output])
|
667 |
+
|
668 |
+
if with_example:
|
669 |
+
gr.Examples(
|
670 |
+
label='Examples',
|
671 |
+
examples=get_example('Image-to-Text'),
|
672 |
+
fn=vd_inference.inference_i2t,
|
673 |
+
inputs=[img_input, seed],
|
674 |
+
outputs=[txt_output],
|
675 |
+
cache_examples=cache_examples),
|
676 |
+
|
677 |
+
def t2t_interface(with_example=False):
|
678 |
+
gr.HTML('<p id=myinst>  Description: ' + get_instruction("Text-Variation") + '</p>')
|
679 |
+
with gr.Row():
|
680 |
+
with gr.Column():
|
681 |
+
text = gr.Textbox(lines=4, placeholder="Input prompt...", label='Text Input')
|
682 |
+
seed = gr.Number(20, label="Seed", precision=0)
|
683 |
+
button = gr.Button("Run")
|
684 |
+
with gr.Column():
|
685 |
+
txt_output = gr.Textbox(lines=4, label='Text Result')
|
686 |
+
|
687 |
+
button.click(
|
688 |
+
vd_inference.inference_t2t,
|
689 |
+
inputs=[text, seed],
|
690 |
+
outputs=[txt_output])
|
691 |
+
|
692 |
+
if with_example:
|
693 |
+
gr.Examples(
|
694 |
+
label='Examples',
|
695 |
+
examples=get_example('Text-Variation'),
|
696 |
+
fn=vd_inference.inference_t2t,
|
697 |
+
inputs=[text, seed],
|
698 |
+
outputs=[txt_output],
|
699 |
+
cache_examples=cache_examples, )
|
700 |
+
|
701 |
+
class image_mimage_swap(object):
|
702 |
+
def __init__(self, block0, block1):
|
703 |
+
self.block0 = block0
|
704 |
+
self.block1 = block1
|
705 |
+
self.which_update = 'both'
|
706 |
+
|
707 |
+
def __call__(self, x0, x1, flag):
|
708 |
+
if self.which_update == 'both':
|
709 |
+
return self.update_both(x0, x1, flag)
|
710 |
+
elif self.which_update == 'visible':
|
711 |
+
return self.update_visible(x0, x1, flag)
|
712 |
+
elif self.which_update == 'visible_oneoff':
|
713 |
+
return self.update_visible_oneoff(x0, x1, flag)
|
714 |
+
else:
|
715 |
+
assert False
|
716 |
+
|
717 |
+
def update_both(self, x0, x1, flag):
|
718 |
+
if flag:
|
719 |
+
ug0 = gr.update(visible=False)
|
720 |
+
if x0 is None:
|
721 |
+
ug1 = gr.update(value=None, visible=True)
|
722 |
+
else:
|
723 |
+
if (x1 is not None) and ('mask' in x1):
|
724 |
+
value1 = {'image':x0, 'mask':x1['mask']}
|
725 |
+
else:
|
726 |
+
value1 = {'image':x0, 'mask':None}
|
727 |
+
ug1 = gr.update(value=value1, visible=True)
|
728 |
+
else:
|
729 |
+
if (x1 is not None) and ('image' in x1):
|
730 |
+
value0 = x1['image']
|
731 |
+
else:
|
732 |
+
value0 = None
|
733 |
+
ug0 = gr.update(value=value0, visible=True)
|
734 |
+
ug1 = gr.update(visible=False)
|
735 |
+
return {
|
736 |
+
self.block0 : ug0,
|
737 |
+
self.block1 : ug1,}
|
738 |
+
|
739 |
+
def update_visible(self, x0, x1, flag):
|
740 |
+
return {
|
741 |
+
self.block0 : gr.update(visible=not flag),
|
742 |
+
self.block1 : gr.update(visible=flag), }
|
743 |
+
|
744 |
+
def update_visible_oneoff(self, x0, x1, flag):
|
745 |
+
self.which_update = 'both'
|
746 |
+
return {
|
747 |
+
self.block0 : gr.update(visible=not flag),
|
748 |
+
self.block1 : gr.update(visible=flag), }
|
749 |
+
|
750 |
+
class example_visible_only_hack(object):
|
751 |
+
def __init__(self, checkbox_list, functor_list):
|
752 |
+
self.checkbox_list = checkbox_list
|
753 |
+
self.functor_list = functor_list
|
754 |
+
|
755 |
+
def __call__(self, *args):
|
756 |
+
for bi, fi, vi in zip(self.checkbox_list, self.functor_list, args):
|
757 |
+
if bi.value != vi:
|
758 |
+
fi.which_update = 'visible_oneoff'
|
759 |
+
|
760 |
+
def dcg_interface(with_example=False):
|
761 |
+
gr.HTML('<p id=myinst>  Description: ' + get_instruction("Dual-Context") + '</p>')
|
762 |
+
with gr.Row():
|
763 |
+
input_session = []
|
764 |
+
with gr.Column():
|
765 |
+
img = gr.Image(label='Image Input', type='pil', elem_id='customized_imbox')
|
766 |
+
fcs = gr.Slider(label="Focus (Semantic -- Style)", minimum=0, maximum=1, value=0.5, step=0.02)
|
767 |
+
gr.HTML('<p id=myinst>  Focus: Focus on what aspect of the image? (0-semantic, 0.5-balanced (default), 1-style).</p>')
|
768 |
+
|
769 |
+
text = gr.Textbox(lines=2, placeholder="Input prompt...", label='Text Input')
|
770 |
+
tstrength = gr.Slider(label="Text Domination (NoEffect -- TextOnly)", minimum=0, maximum=1, value=0, step=0.02)
|
771 |
+
|
772 |
+
seed = gr.Number(20, label="Seed", precision=0)
|
773 |
+
button = gr.Button("Run")
|
774 |
+
|
775 |
+
with gr.Column():
|
776 |
+
output_gallary = gr.Gallery(label="Image Result", elem_id='customized_imbox').style(grid=n_sample_image)
|
777 |
+
|
778 |
+
input_list = []
|
779 |
+
for i in input_session:
|
780 |
+
input_list += i
|
781 |
+
button.click(
|
782 |
+
vd_inference.inference_dcg,
|
783 |
+
inputs=[img, fcs, text, tstrength, seed],
|
784 |
+
outputs=[output_gallary])
|
785 |
+
|
786 |
+
if with_example:
|
787 |
+
gr.Examples(
|
788 |
+
label='Examples',
|
789 |
+
examples=get_example('Dual-Context'),
|
790 |
+
fn=vd_inference.inference_dcg,
|
791 |
+
inputs=[img, fcs, text, tstrength, seed],
|
792 |
+
outputs=[output_gallary],
|
793 |
+
cache_examples=cache_examples)
|
794 |
+
|
795 |
+
def tcg_interface(with_example=False):
|
796 |
+
gr.HTML('<p id=myinst>  Description: ' + get_instruction("Triple-Context") + '</p>')
|
797 |
+
with gr.Row():
|
798 |
+
input_session = []
|
799 |
+
with gr.Column(min_width=940):
|
800 |
+
with gr.Row():
|
801 |
+
with gr.Column():
|
802 |
+
img0 = gr.Image(label='Image Input', type='pil', elem_id='customized_imbox')
|
803 |
+
img0.as_example = types.MethodType(customized_as_example, img0)
|
804 |
+
imgm0 = gr.Image(label='Image Input with Mask', type='pil', elem_id='customized_imbox', tool='sketch', source="upload", visible=False)
|
805 |
+
imgm0.postprocess = types.MethodType(customized_postprocess, imgm0)
|
806 |
+
imgm0.as_example = types.MethodType(customized_as_example, imgm0)
|
807 |
+
istrength0 = gr.Slider(label="Weight", minimum=0, maximum=1, value=1, step=0.02)
|
808 |
+
fcs0 = gr.Slider(label="Focus (Semantic -- Style)", minimum=0, maximum=1, value=0.5, step=0.02)
|
809 |
+
msk0 = gr.Checkbox(label='Use mask?')
|
810 |
+
swapf0 = image_mimage_swap(img0, imgm0)
|
811 |
+
|
812 |
+
msk0.change(
|
813 |
+
fn=swapf0,
|
814 |
+
inputs=[img0, imgm0, msk0],
|
815 |
+
outputs=[img0, imgm0],)
|
816 |
+
input_session.append([img0, imgm0, istrength0, fcs0, msk0])
|
817 |
+
|
818 |
+
with gr.Column():
|
819 |
+
img1 = gr.Image(label='Image Input', type='pil', elem_id='customized_imbox')
|
820 |
+
img1.as_example = types.MethodType(customized_as_example, img1)
|
821 |
+
imgm1 = gr.Image(label='Image Input with Mask', type='pil', elem_id='customized_imbox', tool='sketch', source="upload", visible=False)
|
822 |
+
imgm1.postprocess = types.MethodType(customized_postprocess, imgm1)
|
823 |
+
imgm1.as_example = types.MethodType(customized_as_example, imgm1)
|
824 |
+
istrength1 = gr.Slider(label="Weight", minimum=0, maximum=1, value=1, step=0.02)
|
825 |
+
fcs1 = gr.Slider(label="Focus (Semantic -- Style)", minimum=0, maximum=1, value=0.5, step=0.02)
|
826 |
+
msk1 = gr.Checkbox(label='Use mask?')
|
827 |
+
swapf1 = image_mimage_swap(img1, imgm1)
|
828 |
+
|
829 |
+
msk1.change(
|
830 |
+
fn=swapf1,
|
831 |
+
inputs=[img1, imgm1, msk1],
|
832 |
+
outputs=[img1, imgm1],)
|
833 |
+
input_session.append([img1, imgm1, istrength1, fcs1, msk1])
|
834 |
+
|
835 |
+
gr.HTML('<p id=myinst>  Weight: The strength of the reference image. This weight is subject to <u>Text Domination</u>).</p>'+
|
836 |
+
'<p id=myinst>  Focus: Focus on what aspect of the image? (0-semantic, 0.5-balanced (default), 1-style).</p>'+
|
837 |
+
'<p id=myinst>  Mask: Remove regions on reference image so they will not influence the output.</p>',)
|
838 |
+
|
839 |
+
text = gr.Textbox(lines=2, placeholder="Input prompt...", label='Text Input')
|
840 |
+
tstrength = gr.Slider(label="Text Domination (NoEffect -- TextOnly)", minimum=0, maximum=1, value=0, step=0.02)
|
841 |
+
|
842 |
+
seed = gr.Number(20, label="Seed", precision=0)
|
843 |
+
button = gr.Button("Run")
|
844 |
+
|
845 |
+
with gr.Column(min_width=470):
|
846 |
+
input_gallary = gr.Gallery(label="Input Display", elem_id="customized_imbox").style(grid=2)
|
847 |
+
output_gallary = gr.Gallery(label="Image Result", elem_id="customized_imbox").style(grid=n_sample_image)
|
848 |
+
|
849 |
+
input_list = []
|
850 |
+
for i in input_session:
|
851 |
+
input_list += i
|
852 |
+
input_list += [text, tstrength, seed]
|
853 |
+
button.click(
|
854 |
+
vd_inference.inference_tcg,
|
855 |
+
inputs=input_list,
|
856 |
+
outputs=[input_gallary, output_gallary])
|
857 |
+
|
858 |
+
if with_example:
|
859 |
+
create_myexamples(
|
860 |
+
label='Examples',
|
861 |
+
examples=get_example('Triple-Context'),
|
862 |
+
fn=vd_inference.inference_tcg,
|
863 |
+
inputs=input_list,
|
864 |
+
outputs=[input_gallary, output_gallary, ],
|
865 |
+
cache_examples=cache_examples, )
|
866 |
+
|
867 |
+
gr.HTML('<br><p id=myinst>  How to add mask: Please see the following instructions.</p><br>'+
|
868 |
+
'<div id="maskinst">'+
|
869 |
+
'<img src="file/assets/demo/misc/mask_inst1.gif">'+
|
870 |
+
'<img src="file/assets/demo/misc/mask_inst2.gif">'+
|
871 |
+
'<img src="file/assets/demo/misc/mask_inst3.gif">'+
|
872 |
+
'</div>')
|
873 |
+
|
874 |
+
def mcg_interface(with_example=False):
|
875 |
+
num_img_input = 4
|
876 |
+
gr.HTML('<p id=myinst>  Description: ' + get_instruction("Multi-Context") + '</p>')
|
877 |
+
with gr.Row():
|
878 |
+
input_session = []
|
879 |
+
with gr.Column():
|
880 |
+
for idx in range(num_img_input):
|
881 |
+
with gr.Tab('Image{}'.format(idx+1)):
|
882 |
+
img = gr.Image(label='Image Input', type='pil', elem_id='customized_imbox')
|
883 |
+
img.as_example = types.MethodType(customized_as_example, img)
|
884 |
+
imgm = gr.Image(label='Image Input with Mask', type='pil', elem_id='customized_imbox', tool='sketch', source="upload", visible=False)
|
885 |
+
imgm.postprocess = types.MethodType(customized_postprocess, imgm)
|
886 |
+
imgm.as_example = types.MethodType(customized_as_example, imgm)
|
887 |
+
|
888 |
+
with gr.Row():
|
889 |
+
istrength = gr.Slider(label="Weight", minimum=0, maximum=1, value=1, step=0.02)
|
890 |
+
fcs = gr.Slider(label="Focus (Semantic -- Style)", minimum=0, maximum=1, value=0.5, step=0.02)
|
891 |
+
msk = gr.Checkbox(label='Use mask?')
|
892 |
+
gr.HTML('<p id=myinst>  Weight: The strength of the reference image. This weight is subject to <u>Text Domination</u>).</p>'+
|
893 |
+
'<p id=myinst>  Focus: Focus on what aspect of the image? (0-semantic, 0.5-balanced (default), 1-style).</p>'+
|
894 |
+
'<p id=myinst>  Mask: Remove regions on reference image so they will not influence the output.</p>',)
|
895 |
+
|
896 |
+
msk.change(
|
897 |
+
fn=image_mimage_swap(img, imgm),
|
898 |
+
inputs=[img, imgm, msk],
|
899 |
+
outputs=[img, imgm],)
|
900 |
+
input_session.append([img, imgm, istrength, fcs, msk])
|
901 |
+
|
902 |
+
text = gr.Textbox(lines=2, placeholder="Input prompt...", label='Text Input')
|
903 |
+
tstrength = gr.Slider(label="Text Domination (NoEffect -- TextOnly)", minimum=0, maximum=1, value=0, step=0.02)
|
904 |
+
|
905 |
+
seed = gr.Number(20, label="Seed", precision=0)
|
906 |
+
button = gr.Button("Run")
|
907 |
+
|
908 |
+
|
909 |
+
with gr.Column():
|
910 |
+
input_gallary = gr.Gallery(label="Input Display", elem_id='customized_imbox').style(grid=4)
|
911 |
+
output_gallary = gr.Gallery(label="Image Result", elem_id='customized_imbox').style(grid=n_sample_image)
|
912 |
+
|
913 |
+
input_list = []
|
914 |
+
for i in input_session:
|
915 |
+
input_list += i
|
916 |
+
input_list += [text, tstrength, seed]
|
917 |
+
button.click(
|
918 |
+
vd_inference.inference_mcg,
|
919 |
+
inputs=input_list,
|
920 |
+
outputs=[input_gallary, output_gallary], )
|
921 |
+
|
922 |
+
if with_example:
|
923 |
+
create_myexamples(
|
924 |
+
label='Examples',
|
925 |
+
examples=get_example('Multi-Context'),
|
926 |
+
fn=vd_inference.inference_mcg,
|
927 |
+
inputs=input_list,
|
928 |
+
outputs=[input_gallary, output_gallary],
|
929 |
+
cache_examples=cache_examples, )
|
930 |
+
|
931 |
+
gr.HTML('<br><p id=myinst>  How to add mask: Please see the following instructions.</p><br>'+
|
932 |
+
'<div id="maskinst">'+
|
933 |
+
'<img src="file/assets/demo/misc/mask_inst1.gif">'+
|
934 |
+
'<img src="file/assets/demo/misc/mask_inst2.gif">'+
|
935 |
+
'<img src="file/assets/demo/misc/mask_inst3.gif">'+
|
936 |
+
'</div>')
|
937 |
+
|
938 |
+
###########
|
939 |
+
# Example #
|
940 |
+
###########
|
941 |
+
|
942 |
+
def get_example(mode):
|
943 |
+
if mode == 'Text-to-Image':
|
944 |
+
case = [
|
945 |
+
['a dream of a village in china, by Caspar David Friedrich, matte painting trending on artstation HQ', 23],
|
946 |
+
['a beautiful landscape with mountains and rivers', 20],
|
947 |
+
]
|
948 |
+
elif mode == "Image-Variation":
|
949 |
+
case = [
|
950 |
+
['assets/demo/reg_example/ghibli.jpg', 0, 0.5, 'None', 20],
|
951 |
+
['assets/demo/reg_example/ghibli.jpg', 0.5, 0.5, 'None', 20],
|
952 |
+
['assets/demo/reg_example/matisse.jpg', 0, 0, 'None', 20],
|
953 |
+
['assets/demo/reg_example/matisse.jpg', 0, 1, 'Simple', 20],
|
954 |
+
['assets/demo/reg_example/vermeer.jpg', 0.2, 0.3, 'None', 30],
|
955 |
+
]
|
956 |
+
elif mode == "Image-to-Text":
|
957 |
+
case = [
|
958 |
+
['assets/demo/reg_example/house_by_lake.jpg', 20],
|
959 |
+
]
|
960 |
+
elif mode == "Text-Variation":
|
961 |
+
case = [
|
962 |
+
['heavy arms gundam penguin mech', 20],
|
963 |
+
]
|
964 |
+
elif mode == "Dual-Context":
|
965 |
+
case = [
|
966 |
+
['assets/demo/reg_example/benz.jpg', 0.5, 'cyberpunk 2077', 0.7, 22],
|
967 |
+
['assets/demo/reg_example/ghibli.jpg', 1, 'Red maple on a hill in golden Autumn.', 0.5, 21],
|
968 |
+
]
|
969 |
+
elif mode == "Triple-Context":
|
970 |
+
case = [
|
971 |
+
[
|
972 |
+
'assets/demo/reg_example/night_light.jpg', None, 1 , 0.5, False,
|
973 |
+
'assets/demo/reg_example/paris.jpg' , None, 0.94, 0.5, False,
|
974 |
+
"snow on the street", 0.4, 28],
|
975 |
+
[
|
976 |
+
'assets/demo/tcg_example/e1i0.jpg', None, 1 , 0.5, False,
|
977 |
+
'assets/demo/tcg_example/e1i1.jpg', None, 0.94, 0.5, False,
|
978 |
+
"a painting of an elegant woman in front of the moon", 0.2, 217],
|
979 |
+
[
|
980 |
+
'assets/demo/tcg_example/e2i0.jpg', None, 1, 0.5, False,
|
981 |
+
'assets/demo/reg_example/paris.jpg', None, 1, 0.5, False,
|
982 |
+
"", 0, 29],
|
983 |
+
[
|
984 |
+
'assets/demo/tcg_example/e0i0.jpg', None, 1 , 0.5, False,
|
985 |
+
'assets/demo/tcg_example/e0i1.jpg', None, 0.9, 0.5, False,
|
986 |
+
"rose blooms on the tree", 0.2, 20],
|
987 |
+
[
|
988 |
+
'assets/demo/reg_example/ghibli.jpg', None, 1 , 1 , False,
|
989 |
+
'assets/demo/reg_example/space.jpg' , None, 0.88, 0.5, False,
|
990 |
+
"", 0, 20],
|
991 |
+
[
|
992 |
+
'assets/demo/reg_example/train.jpg' , None, 0.8, 0.5, False,
|
993 |
+
'assets/demo/reg_example/matisse.jpg', None, 1 , 1 , False,
|
994 |
+
"", 0, 20],
|
995 |
+
]
|
996 |
+
elif mode == "Multi-Context":
|
997 |
+
case = [
|
998 |
+
[
|
999 |
+
'assets/demo/mcg_example/e0i0.jpg', None, 1, 0.5, False,
|
1000 |
+
'assets/demo/mcg_example/e0i1.jpg', None, 1, 0.5, False,
|
1001 |
+
'assets/demo/mcg_example/e0i2.jpg', None, 0.86, 0.5, False,
|
1002 |
+
None, None, 1, 0.5, False,
|
1003 |
+
"", 0, 20],
|
1004 |
+
]
|
1005 |
+
else:
|
1006 |
+
raise ValueError
|
1007 |
+
return case
|
1008 |
+
|
1009 |
+
#############
|
1010 |
+
# Interface #
|
1011 |
+
#############
|
1012 |
+
|
1013 |
+
css = """
|
1014 |
+
#customized_imbox {
|
1015 |
+
min-height: 450px;
|
1016 |
+
}
|
1017 |
+
#customized_imbox>div[data-testid="image"] {
|
1018 |
+
min-height: 450px;
|
1019 |
+
}
|
1020 |
+
#customized_imbox>div[data-testid="image"]>div {
|
1021 |
+
min-height: 450px;
|
1022 |
+
}
|
1023 |
+
#customized_imbox>div[data-testid="image"]>iframe {
|
1024 |
+
min-height: 450px;
|
1025 |
+
}
|
1026 |
+
#customized_imbox>div.unpadded_box {
|
1027 |
+
min-height: 450px;
|
1028 |
+
}
|
1029 |
+
#myinst {
|
1030 |
+
font-size: 0.8rem;
|
1031 |
+
margin: 0rem;
|
1032 |
+
color: #6B7280;
|
1033 |
+
}
|
1034 |
+
#maskinst {
|
1035 |
+
text-align: justify;
|
1036 |
+
min-width: 1200px;
|
1037 |
+
}
|
1038 |
+
#maskinst>img {
|
1039 |
+
min-width:399px;
|
1040 |
+
max-width:450px;
|
1041 |
+
vertical-align: top;
|
1042 |
+
display: inline-block;
|
1043 |
+
}
|
1044 |
+
#maskinst:after {
|
1045 |
+
content: "";
|
1046 |
+
width: 100%;
|
1047 |
+
display: inline-block;
|
1048 |
+
}
|
1049 |
+
"""
|
1050 |
+
|
1051 |
+
if True:
|
1052 |
+
with gr.Blocks(css=css) as demo:
|
1053 |
+
gr.HTML(
|
1054 |
+
"""
|
1055 |
+
<div style="text-align: center; max-width: 1200px; margin: 20px auto;">
|
1056 |
+
<h1 style="font-weight: 900; font-size: 3rem; margin: 0rem">
|
1057 |
+
Versatile Diffusion
|
1058 |
+
</h1>
|
1059 |
+
<h2 style="font-weight: 450; font-size: 1rem; margin-top: 0.5rem; margin-bottom: 0.5rem">
|
1060 |
+
We built <b>Versatile Diffusion (VD), the first unified multi-flow multimodal diffusion framework</b>, as a step towards <b>Universal Generative AI</b>.
|
1061 |
+
VD can natively support image-to-text, image-variation, text-to-image, and text-variation,
|
1062 |
+
and can be further extended to other applications such as
|
1063 |
+
semantic-style disentanglement, image-text dual-guided generation, latent image-to-text-to-image editing, and more.
|
1064 |
+
Future versions will support more modalities such as speech, music, video and 3D.
|
1065 |
+
</h2>
|
1066 |
+
<h3 style="font-weight: 450; font-size: 1rem; margin: 0rem">
|
1067 |
+
Xingqian Xu, Atlas Wang, Eric Zhang, Kai Wang,
|
1068 |
+
and <a href="https://www.humphreyshi.com/home">Humphrey Shi</a>
|
1069 |
+
[<a href="https://arxiv.org/abs/2211.08332" style="color:blue;">arXiv</a>]
|
1070 |
+
[<a href="https://github.com/SHI-Labs/Versatile-Diffusion" style="color:blue;">GitHub</a>]
|
1071 |
+
</h3>
|
1072 |
+
</div>
|
1073 |
+
""")
|
1074 |
+
|
1075 |
+
with gr.Tab('Text-to-Image'):
|
1076 |
+
t2i_interface(with_example=True)
|
1077 |
+
with gr.Tab('Image-Variation'):
|
1078 |
+
i2i_interface(with_example=True)
|
1079 |
+
with gr.Tab('Image-to-Text'):
|
1080 |
+
i2t_interface(with_example=True)
|
1081 |
+
with gr.Tab('Text-Variation'):
|
1082 |
+
t2t_interface(with_example=True)
|
1083 |
+
with gr.Tab('Dual-Context Image-Generation'):
|
1084 |
+
dcg_interface(with_example=True)
|
1085 |
+
with gr.Tab('Triple-Context Image-Blender'):
|
1086 |
+
tcg_interface(with_example=True)
|
1087 |
+
with gr.Tab('Multi-Context Image-Blender'):
|
1088 |
+
mcg_interface(with_example=True)
|
1089 |
+
|
1090 |
+
gr.HTML(
|
1091 |
+
"""
|
1092 |
+
<div style="text-align: justify; max-width: 1200px; margin: 20px auto;">
|
1093 |
+
<h3 style="font-weight: 450; font-size: 0.8rem; margin: 0rem">
|
1094 |
+
<b>Version</b>: {}
|
1095 |
+
</h3>
|
1096 |
+
<h3 style="font-weight: 450; font-size: 0.8rem; margin: 0rem">
|
1097 |
+
<b>Caution</b>:
|
1098 |
+
We would like the raise the awareness of users of this demo of its potential issues and concerns.
|
1099 |
+
Like previous large foundation models, Versatile Diffusion could be problematic in some cases, partially due to the imperfect training data and pretrained network (VAEs / context encoders) with limited scope.
|
1100 |
+
In its future research phase, VD may do better on tasks such as text-to-image, image-to-text, etc., with the help of more powerful VAEs, more sophisticated network designs, and more cleaned data.
|
1101 |
+
So far, we keep all features available for research testing both to show the great potential of the VD framework and to collect important feedback to improve the model in the future.
|
1102 |
+
We welcome researchers and users to report issues with the HuggingFace community discussion feature or email the authors.
|
1103 |
+
</h3>
|
1104 |
+
<h3 style="font-weight: 450; font-size: 0.8rem; margin: 0rem">
|
1105 |
+
<b>Biases and content acknowledgement</b>:
|
1106 |
+
Beware that VD may output content that reinforces or exacerbates societal biases, as well as realistic faces, pornography, and violence.
|
1107 |
+
VD was trained on the LAION-2B dataset, which scraped non-curated online images and text, and may contained unintended exceptions as we removed illegal content.
|
1108 |
+
VD in this demo is meant only for research purposes.
|
1109 |
+
</h3>
|
1110 |
+
</div>
|
1111 |
+
""".format(' '+vd_inference.which))
|
1112 |
+
|
1113 |
+
# demo.launch(share=True)
|
1114 |
+
demo.launch(debug=True)
|